Current Projects

Project 4C

Fundamental Understanding and Removal of Non-metallic Inclusions in Aluminium Melt - Research continuation of project P4 “Melt Cleanliness”

More details will follow soon.

Project 11

Tailor rolling of High Strength Aluminium Alloys

The usage of Aluminum alloys has significantly increased in recent years leading to a substantial weight reduction. This weight reduction trend has to be maintained to additional light weighting technologies. Tailor rolled Blanks (TRB) offer an interesting solution through an adequate thickness distribution through the blank allowing for an optimized usage of the weight where it is requested. This technology is however restricted right now to steels. The industrial feasibility of TRB with high strength Aluminum alloys still needs to be demonstrated. In particular the solution heat treatment phase which is necessary in order to guarantee final properties needs to be demonstrated.

more

Project 19

Simulation of microstructure and yield stress during natural and artificial aging of Al-Mg-Si automotive sheet

Project 20

Ultrasonic Particle Detector

Main objective of this project is to develop an ultrasonic detector for non-metallic inclusions in aluminum melts, which is able to verify melt quality and is able to operate under industrial conditions. Research focus is to develop a measurement system that ensures a high reproducibility and continuity regarding the measurement results. Furthermore, the measurement system is supposed to operate without expert knowledge.

Project 22

UniCorn - Understanding the Intergranular Corrosion of 6000 Aluminium Alloys 

The present project will undertake a methodical investigation on the mechanism of intergranular corrosion in 6000 alloys. The influence of the Mg/Si ratio, the copper content, and the heat treatment on phase precipitation and its effect on intergranular corrosion will be analyzed.

Project 24

Cast Part Feasibility Assessment Method

 In-service performance of cast parts not only depends on part design, but also on manufacturing effects like part orientation in mold, gating & feeder system (size, location) and process parameters (filling rates, melt & die temperatures). Casting process restrictions and requirements are of equal importance as attribute requirements (strength, durability, NVH, crash).

Conventional component optimization relies on expert skills and expert guided analysis loops. MDO tools as well as design engineers require fully automated tools & expert systems to evaluate the feasibility and quality of cast parts upfront, quantitatively and efficiently.

The objective is to develop an automatic tool set to run casting simulations, to quantify existing casting process know-how, to make it available for automatic evaluation schemes and to provide validation example parts. more...