

"Innovative Aluminum Lightweight Technologies for Aerospace Application"

Dr. Blanka Lenczowski / Airbus Group Innovations, Munich

AMAP Colloquium October 6th 2016 Aachen

The drivers for future structure

- Increased performance
- High quality and reliability
- Increased efficiency
- Reduction of weight
- Sustainability (eco-efficiency)
- Cost Reduction !

Innovative <u>design</u> principles
Advanced <u>process</u>

→ New material concepts

Requirements for new alloys:

- Low density
- Improvement of damage tolerance (DT)
- Good combination of strength & DT
- Good weldability
- High resistance to corrosion

New advanced technologies & materials

New approach → Welding of Mono/Mixed Materials

Target → New weldable alloys for HDT AI-Structures

Material and technology evolution: A320

Status

» Corus alloy (Ko8242/5024) → Developed in national funded BMBF-Project (1996-1999) under leadership AGI IW Munich

Motivation

- » 5% lower density compared to AA2024/AA2524 and 2.5% lower than AA6013
- » Excellent corrosion resistance (no IGC, EXCO & SCC sensitivity)
- » Excellent fusion weldability (no hot crack sensitivity)
- » Excellent creep or relaxation formability at 300-350°C
- » During relaxation process increase of strength in LBW fusion zone up to base material level

Quelle: Aleris

GROUP

 1996-1999 BMBF-Project with VILS→ 1999 - 2011 industrialization Ko8242/ AA5024

 Today → Improved AA5028 (Aleris)

 AIRBUS

Metallurgical principles of scandium addition

- I. Effects of Scandium Al₃Sc:
- » Grain refinement (casting & welding)
- » Strengthening
- » Recrystallization inhibition

II. Effect of Scandium & Zirkonium Al₃(Sc,Zr):

- » Lower tendency to coagulate
- » Higher anti-recrystalisation and strengthening effect

particles Al₃(Sc, Zr)

subgrain diameter 0.5 μ m

GROUP

Page 6/18

New advanced technologies & materials

Microstructure 1424-3TX 6013-T651 5XXX+Sc-TX 01597/99 200 µm **Recrystallized structure** Ó 150 7045-46 Probe: 6 / Al 1424 [µm] 150 Ó [µm] 6407-3 Probe: K8 - L Non-recrystallized structure

AI-Mg-Sc alloy

AI-Mg-Sc microstructure evolution → Impact of temperature

Conventional casting

Weldability

Al-Mg-Sc shells in TANGO Barrel

Excellent weldability!!!

Type of welding impacts the welding factor due to the cooling rate!!!

New forming technologies: Creep Forming of welded parts

1. Stringer LBW

2. Fixing the panels in the form

3. Creep forming

4. Ready

Advantages:

LBW on flat sheet
No spring-back
Hardening of joint & HAZ
Relaxation of residual stresses and distortions

Innovation → Reduction of costs through reduction of manufacturing steps

Mechanical Properties of Different AI-Mg-Sc Semi-Finished Products

Scalmalloy®: AGI' second-generation AI-Mg-Sc material

Development of high strength PM AI-Mg-Sc material Mechanical properties & corrosion behaviour

- B351-05 Probe: 4FL-4 EADS 0 100
 - **AIRBUS** GROUP

- High performance material with low density
- Extremely high strength combined with exceptional good notch ductility
- Better corrosion behaviour than 7xxx and new 2xxx alloys
- Application for conventional/integral design

Page 12/18

Scalmalloy®: AGI' second-generation Al-Mg-Sc material Highlight 2006 -> Dr. Blanka Lenczowski / Frank Palm

- 4 year research activity results in a new class of high strength alloys with YS about 500 600 MPa.
- AIMgSc (*Scalmalloy®*) combines excellent strength and toughness with very high corrosion resistance

- > Longer lasting profile solutions in highly corrosive environments (seat tracks, floor beams etc.)
- > Welded lower shell fuselage panels with 20 30% higher load bearing capabilities
- Integrally designed high lift devices with improved in service behavior by lower manufacturing costs

Additive Layer Manufacturing (ALM) versus castings & more

Development of loaded optimized parts by ALM

Rapid Technologie für Metalle (ALM)

AIRBUS

GROUP

CAD-Model

AI-Mg-Sc Material Technology

Additive Layer Manufacturing (ALM)

AI-Mg-Sc Material Technology

Technology Directions/Streams

New materials for extended product life & to enhance competitiveness GROUP

Material Distribution in the Airbus family

A350 XWB: Material Breakdown

A350 XWB puts the right material in the right place!

GROUP

Thanks for your attention!

