Digitalization in Process Industries enables the Fourth Industrial (R)Evolution

Advantages of gas analysis
HF measurement on Aluminium with Laser LDS6
Agenda

• Megatrend Digitalization and Industrie 4.0 3
• Optimization through Digitalization 9
• HF measurement on Aluminium plants with TDLAS 17
• Our Vision 35
Megatrend Digitalization and Industrie 4.0
Megatrends – Challenges that are transforming our world

Digitalization
By 2020, the digital universe will reach 44 zettabytes – a 10-fold increase from 2013\(^1\)

Impact on all industries

Urbanization
By 2050, 70 percent of the world’s population will live in cities (2014: 54 percent)\(^3\)

Impact on water and glass industry

Demographic change
The earth's population will increase from 7.3 billion\(^2\) people today to 9.6 billion\(^3\) in 2050. Average life expectancy will then be 83 years\(^2\)

Impact on pharmaceutical and F&B industry

Globalization
The volume of world trade nearly doubled between 2000 and 2014\(^5\)

Impact on water industry

Climate change
According to scientists, in the summer of 2015, earth's atmosphere had the highest CO\(_2\) concentration in 800,000 years\(^4\)

Impact on water industry

Sources:
4. SCRIPPS INSTITUTE OF OCEANOGRAPHY, The Keeling Curve, November 11, 2015
5. UNCTAD Statistics, Values and shares of merchandise exports and imports from 1948 to 2014, November 10, 2015
Increasing amount of data is generated by megatrend Digitalization

Siemens installed base and data generated

The amount of data produced by Siemens products in one day

- **25 gigabytes per day**
 - Siemens gas turbine

- **30 gigabytes per day**
 - Siemens EnergyIP smart grid platform

- **60 gigabytes per day**
 - Siemens computer tomograph

- **100 gigabytes per day**
 - Siemens controllers in particle accelerator CERN

- **6 terabytes per day**
 - Siemens traffic management system Potsdam
From Industrie 1.0 to Industrie 4.0, initiative sponsored by the German Government shows importance of a local approach

First Industrial Revolution
Based on the introduction of mechanical production equipment driven by water and steam power

1784: First mechanical loom

Second Industrial Revolution
Based on mass production achieved by division of labor concept and the use of electrical energy (electrification)

1870: First conveyor belt, Cincinnati slaughterhouse, 1908: Ford T-Model

Third Industrial Revolution
Based on the use of electronics and IT to further automate production (automation)

1969: First programmable logic controller (PLC) Modicon 084

Fourth Industrial (R)Evolution
... driven by Digitalization, Integration and enhanced Flexibility

1800 1900 2000 2025

Characteristics
- Humans, devices and systems are connected along the entire value chain
- All relevant information is available in real-time – across suppliers, manufacturers and customers
- Parts of the value chain can constantly be optimized with respect to different criteria, e.g. cost, resources, customer needs

Exemplary research initiatives: Industrie 4.0 (I4.0) sponsored by the German Government, Industrial Internet Consortium (IIC), Made in China 2025, Internet of Things (IoT)
Industrie 4.0 analysis & studies
VDMA 2015: orientation guide for implementation within small and medium-sized businesses

Quelle: VDMA Leitfaden Industrie 4.0, 2015 (978-3-8163-0677-1)

Andreas Stimpel
RC-DE PD PA FV
“... the share of investments in Industry 4.0 solutions will account for more than 50% of planned capital investments for the next five years. German industry will thus invest a total of €40 billion in Industry 4.0 every year by 2020. Applying the same investment level to the European industrial sector, the annual investments will be as high as €140 billion per annum.”

Industry 4.0 will transform our entire value chain and allows us to develop innovative products and services. We must act now!

CEO, manufacturer of processing machines

We already have many digital initiatives in our company — but no shared vision and roadmap in terms of where we want to go with Industry 4.0.

CEO, machine and plant engineer
Siemens terms its approach to Digitalization in industry and its way towards Industrie 4.0 the “Digital Enterprise”
Optimization through Digitalization
In addition to the megatrends the market dynamics present challenges for Process Industries

- **Time to market**
 - From idea to production
 - Ramp-up of plant

- **Flexibility**
 - Individualized products / quantities
 - Different feedstock

- **Efficiency**
 - Demanded product / quantity
 - Productivity
 - Operational excellence
 - Resources

- **Costs**

- **Long plant lifecycles (> 40 years) with highly fragmented data landscape**
- **Continuous, safe and reliable operations**
- **Need to address different feedstock, markets and quantities**
- **Lack of operators** and “digital natives” as next generation
Digitalization is next level to yield productivity within Process Industries

Process Industries → Electrification, Automation and Digitalization as levers to increase productivity

Technological driver
- Computing power
- Communication
- New sensors
- Virtualization
- Cloud computing
- Simulation
- …

Digitalization

Electrification
- Electrical power wherever and whenever

Automation
- Perfect interaction of all components along the life cycle

Digital Enterprise
- Integrated Engineering
- Integrated Operations

Different initiatives, e.g.,
- Industrie 4.0
- Industrial Internet Consortium (IIC)
- Made in China 2025
- …

Next level of productivity

Experienced partner for Automation and Electrification

Pioneer for Digitalization in industry
Our approach to Digitalization for Process Automation:
From Integrated Engineering to Integrated Operations

Optimization through Digitalization

Digital plant design, tools, and processes with…

Production excellence with…

Integrated Engineering

Integrating engineering information and processes on the basis of one data model with the interface/interplay of different engineering and automation systems.

Integrated Operations

Execution of operation and maintenance tasks without media breaks due to a seamless transition and the consistent data flow between engineering and plant operation.

Benefits

Lower CAPEX
Optimal OPEX

with …

Optimum efficiency
Increased reliability
Higher quality
Smarter decisions
Greater flexibility in optimization

Services

Product design
Process & plant design
Engineering & commissioning
Operation

June 2016 Page 13 Andreas Stimpel RC-DE PD PA FV
Siemens realizes Digital Enterprise for Process Industries through Integrated Engineering and Integrated Operations

Digital Enterprise for Process Industries → Focus of Siemens

Integrated Engineering optimizes engineering and life cycle management …

- Integrated engineering tools
- Simulation
- Common data model

… **Integrated Operations** improves productivity and flexibility

- Cloud-enabled services and analytics
- Next generation of Control
- Digitalization of field level
- Reliable connectivity

Product design → Process & plant design → Engineering & commissioning → Operation → Service
SIMATIC PCS 7 Plant Asset Management supports perfect integration of SITRANS field devices into SIMATIC PCS 7

Integrated Engineering: Integration of SITRANS Field Devices in PDM

Initial situation

Challenges
- **One tool** for
 - Parameterization
 - Diagnostics
 - Commissioning
 - Maintenance
 - Service

Value Proposition
- **Fast commissioning** and overview of plant wide diagnosis
- Secure access via fieldbus network (e.g., HART, PROFIBUS, Fieldbus)
- **Mobile access** via client server solution

Actual status

Outstanding device integration
- **Easy and fast commissioning** via quick start wizards
- Hierarchical structure with plant wide overview of device status
- Structured access to all device functions and parameter
- **Life cycle management**, e.g., tracking of changes, documentation
- **Mobile service** through support of tablets via Industrial WLAN
Process information and improved integration of field level are basis for transparency and optimization

Integrated Operations with Siemens → Digitalization of field level

Today

- **Gather information**
 - Advanced sensors, e.g., multi variable sensors, quality and asset condition information, increased accuracy
 - Customized and application driven sensors
 - Advanced, easy to use, accurate extractive analyzers as well as in-situ analyzers, i.e., TDLAS 1) based

- **Evaluate information**
 - Use of gathered information (partially <1% used 2)), e.g., with ASM, XHQ
 - Transparency with KPIs and dashboards
 - Maintenance, reliability, accuracy
 - Optimized processes with analytics

- **Simple integration**
 - Product libraries integrated in COMOS and PCS 7, 2D/3D and simulation models
 - Easy integration in automation
 - Connectivity other devices

Our vision

- Grid of (basic) sensors, smart sensors and virtual / soft sensors (big data approach)
- Control in the field and modular plants
- Distributed high performance transmitter style analyzers in all rough environments

- Transparency on process and field conditions
- Advanced analytics, real-time process optimization
- Smart grids (field, control) automatically react on changes in process or field conditions

- Digital twin of sensors
- Seamless integration: “Plug’n’produce”
- Sensor grids with IP-based communication, devices as I/O node

1) TDLAS = Tunable Diode Laser Absorption Spectroscopy

Unrestricted © Siemens AG 2016
Page 16 June 2016 Andreas Stimpel RC-DE PD PA FV
HF measurement on Aluminium plants with TDLAS
Aluminium production and emissions of hydrogen fluoride
Where the HF is coming from?

Industrial aluminium smelting is the process of extracting aluminium from its oxide, alumina \((\text{Al}_2\text{O}_3)\) – generally the Hall-Héroult process is used.

Alumina has a **very high melting point**

To reduce the required energy, alumina is dissolved in molten cryolite \((\text{Na}_3\text{AlF}_6)\) in the electrolytic reduction of aluminum oxide.

- **Unwanted drawback**: HF-containing emissions are released
- **Hydrogen fluoride** is a highly dangerous colorless gas, forming corrosive and penetrating hydrofluoric acid upon contact with moisture
- Most of the HF-containing process gas is re-circulated within the process, but some is carried via ducts **to filters** where the HF is adsorbed and removed
What are the challenges with HF?

- Hydrogen fluoride forms **hydrofluoric acid** upon contact with moisture (e.g. air moisture)
- This highly corrosive liquid etches most materials and **threatens machinery** and plant assets
- Hydrofluoric acid is also a **contact poison**, it penetrates tissue more rapidly than typical mineral acids
- Dermal contact with hydrofluoric acid can **cause severe skin burns**
- HF may reach dangerous levels without an obvious smell
- **Poisoning** can occur through exposure of skin or eyes, when inhaled or swallowed

➢ Typically the smelters have **emission limit values** (ELVs) for hydrogen fluoride emissions
Continuous Emissions Monitoring (CEM) of HF

- In terms of **Health, Safety and Environment (HSE)**, emissions must be measured accurately and with good precision.
- But furthermore, a Continuous Emissions Monitoring System can lead to **cost savings due to optimization of process activities**.
- Historically, **cassette samplers** and **wet chemistry techniques** have been used for HF monitoring at the pot room roof-line and the scrubber ducts.
- HF being a strong adsorber, any attempt to do this measurement using **extractive method would lead to huge errors** because the gas going to the analyzer would be different than the one entering into the probe.
- So for several years, **laser gas analyzers** displace these traditional methods – for a lot of reasons …
In-situ diode laser gas analyzing
Advantages of in-situ diode laser gas analyzers

- Measurement is performed **non-intrusively** and in **real-time** – without any disturbance or delay due to gas sampling or gas conditioning
- It provides a **direct measurement of HF**
- The method is **interference-free**: The linewidth of the laser light used is about 1/10th of the width of the single HF absorption line detected
- Laser gas detectors can **measure over long ambient paths**
- **Tunable Diode Lasers** (TDLs) are small, solid-state devices that operate at room temperature and have **long-term reliability**
Siemens LDS 6 – The right choice!

- **Siemens LDS 6** is a diode laser gas analyzer for **O₂, NH₃, HF, H₂O, CO₂, CO, HCl**
- LDS 6 is suitable for fast and non-contact measurement of gas concentrations
- One or two signals from **up to three measuring points** are processed simultaneously by the central analyzer unit
- The in-situ cross-duct sensors at each measuring point can be separated up to 700 m from the central unit by using fiber-optic cables
- The sensors are designed for operation under harsh environmental conditions and contain a minimum of electrical components
- LDS 6 sensors can be operated in strong DC magnetic fields
- Little installation effort and minimum maintenance requirements
 - High **long-term stability** through built-in, maintenance-free reference gas cell
 - **No field calibration** is necessary!
Use case 1 – Dry filters

Flue gases in aluminium production sites are cleaned in a so called bag house filter:
- On the surface of the bags lime or sodium bicarbonate is sprayed to create a so called “cake” which is adsorbing the HF on their surface.
- Since the adsorption capabilities of the cake is limited, the cake has to be renewed from time to time.

Figuring out the best moment for the renewal is crucial for the process optimization which is determined by two conditions:
1. Increased emissions due to exhausted cake adsorption capabilities
2. Unnecessary cake refreshment that leads to increased usage of lime or sodium bicarbonate
Application solution for use case 1 – Dry filters

• The first channel of the LDS6 is located upstream the bag house filter and gives to the DCS the concentration of the HF entering the bag house filter

• Therefore **the DCS can anticipate**, eventually, to shake the bags and renew the cake of adsorbant powder in case of a sudden increase

• The LDS 6 is installed to measure the concentration of HF just before and after the filter (measuring spots 1 and 2)

• If a significant change in the ratio of HF in raw and filtered gas occurs, a change of filter material is indicated

• **Exchanges before time are avoided, exchange costs are reduced and filter efficiency is improved**

• Range: 0-2,000ppm, fast response time: 1s, 150C>T>250C, ambient pressure
Use case 2 – Emission monitoring at the pot room roof

• An aluminum smelter consists of a large number (300 to 720) of pots in which the electrolysis takes place.

• **Worker safety and ambient air quality concerns** require that HF be monitored at the pot room because fugitive emissions escape through the roof vents of the smelter buildings during anode changing, metal tapping, pot tending, etc.

• These fugitive emissions escape into the atmosphere without being treated. It is therefore of interest to **quantify the concentration of these emissions** in order to reduce them to the lowest practical level thereby minimizing any impact.
Application solution for use case 2 – Pot room roof

- LDS 6 provides sensitivities from the **part per million-volume** meter
- LDS 6 is also capable of controlling the **emissions in an open path** measurement in the pot room (measuring spot 4)
- As path length, a measurement distance of **more than hundred meters** can be applied, which leads to truly representative HF concentration data in the ambient air

as customized solution
Use case 3 – Stack monitoring

Stack monitoring is also important to

- Reduce fugitive HF emissions **to protect the environment**
- Give continuous and real-time readings to **enhance operational efficiency**
- **Safeguard people** in and around the smelters
Application solution for use case 3 – Stack monitoring

• The LDS 6 installed behind the filter (spot 2 and 3) also delivers data from the outlet duct which ensures that environmental standards are kept
• Range: 0-5 ppm, t<150C, P ambient
Complete application solution

- One sort of device for the HF monitoring throughout the whole smelter!
- Up to three measurement spots described above can be controlled with **only one LDS 6 central unit**, which is connected to the three sensor pairs via fibre optic cables.

* as customized solution
Your benefits
Benefits of installing the Siemens LDS 6 in aluminium smelters

• The in-situ gas analyzer LDS 6 is characterized by a **high availability** and **unique analytical selectivity**
• LDS 6 enables the measurement of HF **close to the essential measuring points** in hot, humid, corrosive, explosive, or toxic conditions
• LDS 6 needs **very little installation effort** and a minimum of maintenance, due to its built-in, **maintenance-free** reference gas cell that makes **field calibration unnecessarily – lifetime calibrated!**
• It provides **real-time measurements**
• **No gas sampling** of toxic and aggressive HF is necessary, the measurements are performed in-situ
Benefits of installing the Siemens LDS 6 in aluminium smelters

You will gain

• Highest reliability and lowest cost of ownership
 • No consumable parts
 • Very low maintenance
 • Verification kit available for easy, fast and repeatable checks
 • HF data that is more accurate, and with faster response times
 • Compliance with Health, Safety and Environment (HSE) regulations
 • Optimal changing cycles of the filters and therefore lower maintenance costs!
Our Vision
Siemens PD Process Automation with comprehensive portfolio to drive Digitalization

Digitalization in Process Industries → PD PA portfolio today and in the future

PD Process Automation portfolio

Engineering Management Level
- COMOS Plant Engineering
- SIMIT Simulation
- XHQ Operations Intelligence
- MES Solutions Pharma

Operation and Control Level
- SIMATIC PCS 7 Process Control System
- Power Supplies
- SIMATIC S7-400

Field Level
- Analytical Products and Solutions
- Process Instrumentation
- Industrial Identification
- Industrial Communication

Our vision

Engineering Management Level
- Seamless horizontal integration
- Optimization through full transparency and analytics

Operation and Control Level
- Advanced control enabling modularization, virtual control and remote operations
- System integrated diagnostics & maintenance

Field Level
- Enhanced embedded functionality
- Fully included in “as-is” digital twin based on digital connectivity
- Soft / virtualized and smart sensors

Technology:
- Hardware
- Software

On-demand networks, real-time communication, RFID and NextGen code reading for Digitalization
Thank you for your attention!

Andreas Stimpel
Head of Sales Germany
Process Instrumentation and Process Analytics
RC-DE PD PA FV
Franz-Geuer-Str. 10
50823 Köln
Phone: +49 221 576-1063
Mobile: +49 173 2708815
E-mail:
andreas.stimpel@siemens.com

siemens.com/answers