

Hochschule Kempten

Generate and preserve Process knowledge

Control and optimize with Predictive Analytics and knowledge-based Systems

J. Gottschling, Universität Duisburg Essen D. Hartmann, Hochschule Kempten

Predictive Analytics – What is it?

Predictive Analytics uses methods from the fields of Statistics, Machine Learning, and Data Mining to give predictions based on current and historical data.

The above mentioned fields are not well seperated. Data mining methods covers e.g. Classification (Clustering), Decision trees and Association Analyzes.

Predictive policing is about the prediction of crimes. The software gives predictions based on past years data (e.g., location, time, Prosecutions) on criminal offenses in a certain region. The police

patrol cars can then be concentrated in this vulnerable region (See

http://www.computerwoche.de/a/was-ist-was-bei-predictive-analytics,3098583

Link: http://www.computerwoche.de/a/ was-ist-was-bei-predictive-analytics,3098583

Google Maps – An example to get started

Static Route planners calculate the arrival time with an average Speed and the Speed profile of the route.

But: The arrival time depends significantly on the day of the week and the time.

Whether the trip from Duisburg to Dortmund on the A40 at 7:00 am begins on Wednesday or on Sunday, has a significant impact on the Arrival time.

Dynamic route planners consider - in addition to the average Speed and the Speed profile, **historical and current data** (existing congestion and construction sites) in the calculation of the route and the arrival time.

Such data is obtained e.g. by Floating Car Data / Floating Phone Data.

Google Maps Product manager Dave Barth:

"When we summarize your speed with the speed of other smartphones on the road, from thousands of phones, moving around the streets of any city at any time, we get a good Picture of current Traffic conditions."

The basis of supervised Machine Learning is a set of similar datasets. A dataset is a group of related data fields, e.g. *T*, *C*, *Si*, *Mg* and *Strain*. If the datasets are stored in a table, a dataset is one row of this table.

T [°C]	C [%]	Si [%]	Mg [%]	Dehnung [%]
1.381,23	3,59	2,71	0,052	20,0
1.385,33	3,56	2,72	0,041	20,3
1.381,40	3,61	2,63	0,042	7,6
1.385,40	3,62	2,68	0,049	19,3
1.379,00	3,63	2,66	0,054	20,0
1.380,00	3,62	2,63	0,053	19,3
1.379,50	3,72	2,78	0,048	20,0
1.379,20	3,67	2,72	0,055	15,9
1.380,68	3,58	2,62	0,047	17,6

The fields (in the following also called variables) of such a Dataset are distinguished into functionally *independent* and functionally *dependent* fields. In the above example, *T*, *C*, *Si*, and *Mg* are the functionally independent variables, and the *Strain* is a functionally dependent variables are also possible.

The aim of Machine Learning:

To predict the functionally *dependent* variables "sufficiently good" from the functionally *independent* variables on the basis of training data.

The variables of measured Datasets are *Random variables* in the stochastic sense since they are subject to random fluctuations, and for these random variables, the terms *stochastic dependence* or *independence* are well defined.

Therefore, the terms *functional dependence* and *independence* are used for the measured values.

Functionally dependent Random variables $(A_1, ..., A_k)$ with a Prediction function F are predicted from the functionally independent random variables $(U_1, ..., U_n)$. Thus: $(A_1, ..., A_k) = F(U_1, ..., U_n)$.

These Prediction functions are trained and validated on the basis of Measured data.

There are many methods of Machine Learning that can generate such Prediction functions:

- Neural Networks (NN),
- Bayesian Networks (BN),
- K Nearest Neighbors (KNN)
- Decision Trees (DT),
- Multiple Regression (MR),
- Support Vector Machines (SVM),
- Logistic Regression (LOR)

...

The Intelligent Analysis Manager is the core module of the *EIDOminer* and

summarizes several methods of Machine Learning in a Functionbox.

The predictions are only as good as the data on which they are based!

The software *EIDOminer* therefore examines in the *Preprocessor* whether the *functionally independent* variables from which the *functionally dependent* variables are to be predicted have statistical dependencies and whether the number of these *functionally independent* variables can be reduced (Dimension reduction).

If the functionally independent variables are correlated (not only linear), the measurement of their isolated influence on the functional dependent variable becomes more difficult. A variable, which is correlated with other variables, measures in part the influence of the other variables.

This so-called *Multicollinearity* can be eliminated or reduced by different methods.

Through Dimensional reduction such problems are corrected and the model becomes "slimmer", the model interpretation more precise.

If the functional dependent random variable is discrete, one speaks of *Classification* and of *Regression*, if it is continuous.

So:

Classification is the prediction of a class (e.g., OK, Critical, NONE), and *Regression* is the prediction of a real number.

But not only the Dependencies of the functionally independent variables are important.

Important is also the Question:

What is the effect of the functionally independent variables on the functionally dependent variables?

The Preprocessor, however, can not determine whether the set of functionally independent variables is complete. Complete in the sense that the independent variables can predict the dependent variable (s) well.

By increasing additional independent variables, the Prediction quality can often be significantly improved.

The Preprocessor includes the following pedictability function:

It will search for all Datasets whose functional independent variables are "close" to each other, while the functionally dependent variables are "wide" apart.

Such datasets can not be processed by the Machine Learning algorithms.

A new added variable often provides a solution.

If the data is excellent, the Predictions are also excellent.

As an example, consider the dataset

TestData01 (100 lines):

6 functionally independent variables I1 - I6 and a functionally dependent variable D

- **I1** randomly generated with a Normal distribution
- **I2** 3*I1 + Noise
- **I3** 5*I1 + Noise
- I4 randomly generated with a Normal distribution
- **I5** I1 + I4 + Noise
- **I6** π*I4 + Noise
- **D** 2*I1^0,5 + 3 * I4^1.2

	J2	▼ (*	f_{x}				
	Α	В	С	D	E	F	G
1	11	12	13	14	15	16	D
2	22,63	67,88	113,17	30,51	53,15	95,86	190,83
3	18,13	54,4	90,65	28,05	46,17	88,12	172,43
4	17,66	52,98	88,31	27,71	45,38	87,04	169,94
5	16,83	50,48	84,11	31,1	47,93	97,7	193,74
6	21,24	63,76	106,22	33,13	54,38	104,09	209,38
7	26,97	80,92	134,87	26,61	53,58	83,63	164,26
8	21,82	65,46	109,1	29,1	50,92	91,42	180,65
9	18,07	54,19	90,32	29,83	47,91	93,72	184,98
10	22,09	66,26	110,45	26,02	48,08	81,73	159,19
11	17,18	51,52	85,9	31,68	48,85	99,55	197,98
12	16,44	49,31	82,19	29,17	45,61	91,64	179,91
13	21,79	65,37	108,97	33,82	55,61	106,26	214,51
14	18,06	54,17	90,27	29,22	47,27	91,81	180,66
15	20,79	62,37	103,93	30,82	51,59	96,83	192,65
16	23,52	70,57	117,59	27,72	51,22	87,08	171,31
17	21	63,02	105,03	28,75	49,75	90,31	178,0
18	22,32	66,97	111,64	27,66	49,98	86,91	170,64
19	15,99	47,95	79,91	30,79	46,76	96,72	191.31

	А	В	С	D	E	F	G	н	l. I	J	к	L	М	N
1								Korrela	ationsmatrix					
2	11	12	13	14	15	16			1	12	13	14	15	16
3	22,63	67,88	113,17	30,51	53,15	95,86		1	1,000000	0,999998	0,999999	-0,100961	0,765300	-0,100512
4	18,13	54,4	90,65	28,05	46,17	88,12		12	0,999998	1,000000	0,999999	-0,100874	0,765358	-0,100425
5	17,66	52,98	88,31	27,71	45,38	87,04		8 Ja	0,999999	0,999999	1,000000	-0,100679	0,765483	-0,100231
6	16,83	50,48	84,11	31,1	47,93	97,7		14	-0,100961	-0,100874	-0,100679	1,000000	0,563109	0,999998
7	21,24	63,76	106,22	33,13	54,38	104,09		/ 15	0,765300	0,765358	0,765483	0,563109	1,000000	0,563481
8	26,97	80,92	134,87	26,61	53,58	83,63		16	-0,100512	-0,100425	-0,100231	0,999998	0,563481	1,000000
9	21,82	65,46	109,1	29,1	50,92	91,42								
10	18,07	54,19	90,32	29,83	47,91	93,72								

*f*_x =KORREL(A\$3:A\$102;\$B\$3:\$B\$102)

According to the above linear correlation matrix, only the columns I1, I4 and I5 should be used to train the tools of the Machine Learning.

The *EIDOminer* software detects the correlated variables when loading the dataset and suggests removing these variables. I5 = I1 + I4 + Noise is not recognized because the correlation coefficient Is set to 90% by default.

Entfernen	Variable	Korrelation	PP-Tool-Name
	12	I1, I2=99,9998%	N0: Rohdaten
\checkmark	13	I1, I3=99,9999%	N0: Rohdaten
\checkmark	13	12, 13=99,9999%	N0: Rohdaten
\checkmark	16	14, 16=99,9998%	N0: Rohdaten

Result Neural networks

Result SVM

Result Multiple Regression

				Multiple Regression (MR) (N1: Rohdaten
Design Parameter E	Ergebnis			
Variablen				
Gleichungsvariable	en			
Result				
Parameter	Coefficients	StandardError	T-Test	P-Value
11	-3,4544	4,0598	-0,8509	0,3973
12	0,4534	1,1593	0,3911	0,6967
13	0,7684	0,8603	0,8931	0,3744
14	7,2323	3,8604	1,8735	0,0645
15	-1,5038	1,3307	-1,1301	0,2617
I 6	0,4479	1,152	0,3888	0,6984
Constant	-32,2334	0,2634	-122,3661	0
Analysis of Variance	ce			
Information				
R-squared = 99,992 R-squared (adjusted Standart error of Est. Mean absolute error	percent for Df) = 99,992 percent . = 0,131 = 0.082			

The output shows the results of fitting a multiple regression model to describe the relationship between D and 7 independent variables.

The equation of the fitted model is

 $D = -3,45^{*}(I1) + 0,45^{*}(I2) + 0,77^{*}(I3) + 7,23^{*}(I4) + -1,50^{*}(I5) + 0,45^{*}(I6) + -32,23^{*}(Constant)$

Start

However, the coefficients are not statistically significant.

Result Bayesian Network

Result KNN

Predictive Analytics with ElDOminer

Dimension reduction)

🚰 ElDOminer									
Datei Extras DB und Einstellungen Assistenten Hilfe									
Test01									
Image: Sector	Hilfe	11 22,63 18,13 17,66 21,24 26,97 21,82 18,07 22,09 17,18 16,44 21,79 18,06 20,79 23,52 21 22,32 15,99 21,65 25,35 21,35 16,15 18,75 20,96	14 30,51 28,05 27,71 33,13 26,61 29,1 29,83 26,02 31,68 29,17 33,82 29,22 30,82 27,72 28,75 27,66 30,79 32,6 28,81 30,87 28,99 32,39 30,24	D 190,837 172,439 169,947 209,382 164,264 180,656 184,986 159,192 197,988 179,918 214,513 180,661 192,655 171,311 170,641 191,319 205,634 179,337 193,134 178,575 203,472 188,555					
	24	21,03	27,93	172,254					
	25	21,01	28,29	174,775					
	26	19,09	29,66	184,016					
	27	18,5	29,62	183,596					
	28	18,53	28,27	1/4,077					
	29	22,13	30,36	189,662					
	1 30	15 37	22.52	203 663					

From the Singular Value Decomposition (SVD) in the preprocessing, all dependencies within the functionally independent variables are discovered. Only the variables I1 and I4 are relevant. The information of the other Independent variables is lost with this type of dimensional reduction.

Applying the Principal Component Analysis (**PCA**) to this data, the first two Principal Components **PC1** and **PC2** covers almost 100% of total variation. As with the SVD, the original data will be reduced to two columns. But with the SVD, it is the original columns **I1** and **I4**. In the case of the **PCA** both columns **PC1** and **PC2** knows about *all* columns of the original data.

Dimension reduction with the Principal Component Analysis - Principal Component Analysis (PCA)

Command Window							Command Window	
>> X							>> PC	
X =							PC =	
22.6300	67.8800	113.1700	30.5100	53.1500	95.8600		-136.1229	111.0979
18.1300	54.4000	90.6500	28.0500	46.1700	88.1200		-109.1025	101.4186
17.6600	52.9800	88.3100	27.7100	45.3800	87.0400		-106.2870	100.1181
16.8300	50.4800	84.1100	31.1000	47.9300	97.7000		-101.3144	111.5847
21.2400	63.7600	106.2200	33.1300	54.3800	104.0900		-127.8557	119.7564
26.9700	80.9200	134.8700	26.6100	53.5800	83.6300		-162.0863	98.8245
21.8200	65.4600	109.1000	29.1000	50.9200	91.4200	PCA	-131.2334	106.0141
18.0700	54.1900	90.3200	29.8300	47.9100	93.7200		-108.7325	107.5484
22.0900	66.2600	110.4500	26.0200	48.0800	81.7300		-132.7962	95.4528
17.1800	51.5200	85.9000	31.6800	48.8500	99.5500		-103.4469	113.6977
16.4400	49.3100	82.1900	29.1700	45.6100	91.6400		-98.9724	104.8354
21.7900	65.3700	108.9700	33.8200	55.6100	106.2600		-131.1412	122.2781
18.0600	54.1700	90.2700	29.2200	47.2700	91.8100		-108.6650	105.4442
20.7900	62.3700	103.9300	30.8200	51.5900	96.8300		-125.0654	111.6681
23.5200	70.5700	117.5900	27.7200	51.2200	87.0800		-141.3965	101.6984
21.0000	63.0200	105.0300	28.7500	49.7500	90.3100		-126.3484	104.5822
22.3200	66.9700	111.6400	27.6600	49.9800	86.9100		-134.2466	101.1975
15.9900	47.9500	79.9100	30.7900	46.7600	96.7200		-96.2668	110.2836
21.6500	64.9700	108.2600	32.6000	54.2500	102.4200		-130.2856	118.0314
25.3500	76.0300	126.7200	28.8100	54.1500	90.5200		-152.3515	105,9540
21.3500	64.0700	106.7600	30.8700	52.2400	96.9900		-128.4640	112.0023
16.1500	48.4400	80.7300	28.9900	45.1300	91.0800		-97.2213	104,1409
19.4900	58.4700	97.4700	30.2000	49.7100	94.8800		-117 3032	109 1984
18.7500	56.2400	93.7400	32.3900	51.1400	101.7700		-112 8671	116 5515
20.9600	62.8800	104.7700	30.2400	51.1800	95.0200		-126 0669	109 7259
							-120.0008	103.7233

RMSE = 0,49897209 (SVD)

Tools

Aktiviert	Trainiert	Name
\checkmark	\checkmark	Neural Network (N0: SVD)
\checkmark	\checkmark	K-nearest Neighbour (N0: SVD)
\checkmark	\checkmark	Multiple Regression (N0: SVD)
$\mathbf{\mathbf{\nabla}}$	\checkmark	Support Vector Machine (N0: SVD)
	\checkmark	Bayesian Network (N0: SVD)
	\checkmark	Neural Network (N1: Rohdaten)
	\checkmark	K-nearest Neighbour (N1: Rohdaten)
	\checkmark	Multiple Regression (N1: Rohdaten)
	\checkmark	Support Vector Machine (N1: Rohdaten)
	\checkmark	Bayesian Network (N1: Rohdaten)

RMSE = 0,5318265 (Rohdaten)

Tools

Aktiviert	Trainiert	Name
	\checkmark	Neural Network (N0: SVD)
	\checkmark	K-nearest Neighbour (N0: SVD)
	\checkmark	Multiple Regression (N0: SVD)
	\checkmark	Support Vector Machine (N0: SVD)
	\checkmark	Bayesian Network (N0: SVD)
\checkmark	\checkmark	Neural Network (N1: Rohdaten)
\checkmark	\checkmark	K-nearest Neighbour (N1: Rohdaten)
\checkmark	\checkmark	Multiple Regression (N1: Rohdaten)
\checkmark	\checkmark	Support Vector Machine (N1: Rohdaten)
	~	Bayesian Network (N1: Rohdaten)

RMSE = 0,3842543 (PCA)

I OOIS		
Aktiviert	Trainiert	Name
	\checkmark	Neural Network (N0: Rohdaten)
\checkmark	\checkmark	K-nearest Neighbour (N0: Rohdaten)
\checkmark	\checkmark	Multiple Regression (N0: Rohdaten)
\checkmark	\checkmark	Support Vector Machine (N0: Rohdaten)
	\checkmark	Bayesian Network (N0: Rohdaten)

ିକ୍ଷ ElDOmine	ဖို့ ElDOminer								
🗋 🞽 🐧) 🖻 🚯 🔙 🔿								
Datei Extra	as DB un	d Einstellunge	n Assistenter	n Hilf	e				
X Test01PC/	A Gaus	ss							
⊟ - 🍥 Gauss					PC1	PC2		D	
	101 Functionbo	x		▶ 01	-2,3991	0,05		190,837	
- 4	Supervisor			02	1,5196	-1,4761		172,439	
<u></u> ₽• ⊞	Original Dat	ta		03	1,944	-1,6971		169,947	
	- = Summa	iny		04	1,8369 0,92			193,743	
	🛄 Statistic	cs		05	-1,9257	2,1315		209,382	
	Distribu	tion eChart		06	06 -1,4827 -0,9566			180,656	
	- Mepen	dentChart		07	1,1788	-0,1235		184,986	
ė- #	N0: Rohdat	ten		08	-1,0124	-3,3073		159,192	
		nion Network (N0: R	ohdaten)	09	2,5474	-0,5026		179,918	
	- 🍒 K-neare	est Neighbour (N	10: Rohdaten)	10	-2,4846	2,6117		214,513	
	- Multiple	e Regression (N) t Vector Machin): Rohdaten) e (N0: Robdater	11	1,3209	-0,585		180,661	
	- Bayesia	an Network (NO:	Rohdaten)	12	-1,0777	0,4182		192,655	
				13	-2,4586	586 -2,1281		171,311	
				14	-0,7929	-1,1617		178,01	
				15	-1,5487	-2,0808		170,641	
				16	2,5393	0,7521		191,319	
				17	-2,1157	1,6996		205,634	
				18	-4,0694	-1,4378		179,337	
				19	-1,5181	0,4177		193,134	
				20	2,8062	-0,6173		178,575	
				21	0,0263	0,05		187,944	
	Daten	laden Pro	ognose Ak	dive T	ool(s) Super	visor	Supervis	or Ergebnisse	
		D	Majority V	oting/	Average	V	Veighted	Average	
	▶ 01	183,876	183,876		183,6919	9 18	83,9002		
	02	179,109	179,109		179,8114	1	79,1323		
	03	178,575	178,575		179,3862	2 17	78,6271		
	04	173,012	173,012		174,8972	2 17	73,0281		
	05	209,042	209,042		208,6576	6 20	09,0567		
	06	205,136	205,136		205,5236	3 20	05,1642		
	07	174,077	174,077		175,7646	3 17	74,1134		
<	08	171,311	171,311		173,5927	7 17	71,3205		
	00	105 054	105 054		105 100	-			

Trained Prediction functions can give, with a sufficiently good datasets, *mathematically* justified good prediction for the functionally dependent variables on the basis of the functionally independent variables.

Every tool of Machine Learning has strengths and weaknesses, by intelligent fusion methods the predictions of the individual tools are strengthened and summarized into a common result.

If the functionally dependent Variables can not be predicted adequately from the functionally independent Variables even after a well-founded training phase (including data preparation), then, the database is not good. As already mentioned, missing variables that have not been measured or are not known are the reasons for this. Furthermore, it should be checked whether the records can be classified by adding a new variable.

Examining the datasets and checking all process parameters that contain an influence on the dependent Variables give a deep insight into the investigated production process.

The console program *EIDOminerConsole* is the software to integrate trained prediction functions of the supervisor into external software. This allows the full range of functions of these programs (for example, MSExcel) to be used, for example, to create custom diagrams or perform parameter assignments.

1	History:	Sand					
2	Analysis:	GGV					Developer Closer
2	Analysis.	47.524					Predict
3	капде	A7.E34					
4							
5							
6	Einwaage	H2O	C_Gehalt	Aktivton	SSG	GGV	
7	150,50	2,50	2,36	7,60	11,37	3,39	Einfluss H2O auf GGV
8	150,50	2,55	2,36	7,60	11,37	3,40	3.70 ,
9	150,50	2,60	2,36	7,60	11,37	3,40	
10	150,50	2,65	2,36	7,60	11,37	3,40	3,65
11	150,50	2,70	2,36	7,60	11,37	3,40	3,60 -
12	150,50	2,75	2,36	7,60	11,37	3,41	〒 3,55 -
13	150,50	2,80	2,36	7,60	11,37	3,42	≥ 3.50 - → X
14	150,50	2,85	2,36	7,60	11,37	3,45	
15	150,50	2,90	2,36	7,60	11,37	3,47	3,43
16	150,50	2,95	2,36	7,60	11,37	3,49	3,40 -
17	150,50	3,00	2,36	7,60	11,37	3,50	3,35
18	150,50	3,05	2,36	7,60	11,37	3,47	2,40 2,90 3,40 3,90 4,40
19	150,50	3,10	2,36	7,60	11,37	3,47	H2O [%]
20	150,50	3,15	2,36	7,60	11,37	3,44	

In this example, the Water content is varied and the other functionally independent variables are kept constant (e.g. Median).

If the influence of a variable on the dependent Variable is not foundout, then it may be that this variable, in combination with *another* or even *several* independent variables, has a very strong *influence* on the Target variables (comparable to Cross-allergies).

Suppose there are 10 functional independent Variables and of each, only 10 variations are formed, then a Matrix with 10 Billion lines and ten columns is generated. The Prediction of this Matrix with the *EIDOminer* will be possible in the future ... today not yet.

In the new product *EIDOanalyzer* virtual Design of Experiment are integrated. With relatively few virtual "Trials", the influence of many factors on the target variables can be examined in order to recognize which factors are significant. The relationships between the "important factors" and the target variables can be determined with well-trained Prediction functions to determine optimal settings of the process parameters.

Process control via Parameter variation - Virtual DOE

The *EIDOdata* software also contains the integrated Excel-Application *EIDOpredict*.

Analysenhistorie C15 Bezeichnung C15 Aktuellen Report überschreiben Report erstellen	Analyse Analysen Testdaten Original- auswählen * erzeugen daten laden	Daten Jöschen Messung vs Dia Prognose er	Report : n.a. Status : n.a. Datum : 04.01.2006 19:50:00	Entfernen Add-In anpassen
A1 I A B 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I	C15 Verfügbare Analysen C15_Ana01	Parameter Unabhängig Phip Phi Temp	Abhängig kf Eigenschaft Bitte wählen Sie einen Parameter	
11 12 13 14 15 16 17 18 19	Ähnliche Analysen 0 Analysen gefunden Nichtkompatible Analysen 0 Analysen gefunden	①EIDO data	Abbrechen Analyse laden	

Graphical Representations and Parameterizations are thus possible.

Analy Bezei A	senhistorie C chnung ktuellen Repo Rep	rt über ort ers	rschreib stellen	Analyse laden	Analysen Testdaten Original- auswählen + erzeugen daten laden Daten erzeugen	Daten löschen	Berechnen Messung vs Diagram Prognose ersteller Berechnungen durchführen	Report : C15 Status : In DB vorhanden Datum : 16.03.2016 15:41:41 Aktueller Repor	Entfernen t	Einstellungen öffnen Add-In anpassen
	Α		в	С	C15		Vorschau			L
1 2 3 4 5 6 7 8 9 10 11	Phip		Phi	C15 Temp	Verfügbare Analysen C15_Ana01 Beschreibung -	-	Phip Phi 90 0,63 1,5 0,5 90 0,63 1,5 0,5 90 0,63 1,5 0,55 90 0,22 1,5 0,54 8 0,47 0,1 0,56	i Temp 2 500 600 2 600 1200 5 1000 4 500 5 1000 4 700 5 600	kf 645,79 386,01 577,38 59,6821 186,666 556,41 572,31 160,055 182,64 290,09	
12 13 14 15 16 17 18 19 20					Einstellungen Reihenfolge Anzahl O Geordnet 1248 O Zufällig Installer		Es wurden 1248 Datensätze in d	er Datenbank gefunden.	Laden	

Discretization and Distribution of Data								
Dependent varia	ble: Gussteildichte -	Number of ranges: 4	Minimum number of elements in range: 3 - Calculate					
Gussteildichte	2,582 - 2,618 2%	2,618-2,636	2,636 - 2,654 45%					
			hundur					
OfenTemp	588,3-613,3 3%	613,3-638,4 15%	638,4-663,4 663,4-688,4 55%					
FormTemp	181,2 - 257,7 92%	257,7-487,3	\supset					
SchmelzeTe	508,9-515,4 6%	515,4-521,9 25%	521,9-528,3 7% 528,3-534,8 22%					
InnendruckFo	142.4 - 297.9	297.9-375.6	2,63-2,654 70%					
			🖳 V_Phase2 2,1-2,477					
V_Phase1	0,17-0,315) 0,315-0,46 <u>2(^{5%}</u>	Range: 2,1-2,477					
			Number of Values: 51					
V_Phase2	2,1-2,383	2,383 - 2,665	Percentage: 35,4166666666667					
	ուոՈւովիելի		Data Distrubtion in Range					
V_Stroemung	0,99-8,255	8,255 - 11,89	5					
			44 4					
Luftmenge	11.9-2021 (65%)	2021 - 4031	4					
		25%	3 3					
Nachdruck	147,8-175,4 74%	175,4-258,3						
		m 1000000000000000000000000000000000000						
		9%						
			0 2,1 2,12 2,17 2,19 2,21 2,23 2,28 2,31 2,33 2,35 2,37 2,39 2,42 2,46					
		75%	2,11 2,15 2,18 2,2 2,22 2,26 2,29 2,32 2,34 2,36 2,38 2,4 2,44 2,47					

With the knowledge-based system *EIDOwiba*, one can create complex tree structures on the basis of if-then rules.

Here is a simple example of such a tree structure.

Such a tree structure is represented by the Rule-Editor as follows:

Rule Editor		
Rule Name: CGehalt	Priority: 100 C < 3,4 C C ≥ 3,4 Zweig11 Zweig12 Zweig12 Zweig12	
Rule Type: Standard ~	Mg	
Rule Messages Options Comments Cross References	Mg < 0,05 Mg ≥ 0,05 Mg < 0,07 Mg	g ≥ 0,07
If:		long = 10
C<3,4	Rule Editor	
	Rule Name: MgGehalt Priority: 70	
	Rule Type: Standard V	
Then:	Rule Massages Options Comments Cross Deferences	
Zweig11=1	If:	
	Zweig11=1 und Mg<0,05	
Rule was compiled		
	Then:	
	Elong=0	

The knowledge base *EIDOwiba* in combination with well-trained Prediction functions of the *EIDOminer* can give in each production step optimized parameters to the process.

Knowledge is defined here as Experience and empirical Process knowledge in the form of rules and instructions of each Foundry as well as generally available knowledge, rules, correlations and formulas that are linked to the individual subprocesses.

The foundry module of the *EIDOwiba* is based on a basic knowledge of general rules of the casting technique, but must be adapted individually with regard to each sub-process.

Rule	Editor						- • •
Rule <u>N</u> ame:		MgGehalt				Priority:	70
Rule <u>T</u> ype:		Standard			~		
Rule	Messag	ges Options	Comments	Cross Reference	es		
lf:							
Zweig	11=1 un	d Mg<0,05					
Then:							
Elong	=0						
□R	ule was	compiled		Ignore rule, don't	compile		
	✓ (3 3 4 4 	3 🔁	🤹 🚔 🔹) 🎨		<u>Q</u> K Cancel

- The realization of Industry 4.0 methods has become a strategic competitive factor
- In production, the digital adaptive optimization of complex processes plays an important role
- Only collecting and selecting data is not a solution
- Generating Knowledge from data: The key to this is the intensive and adapted use of intelligent methods for data analysis
- Companies must be open minded to the problems of data acquisition, data analysis and intelligent use of predictions
- The Intelligence is still AHEAD of the computer: "Digitization" requires from the employees new skills and specialities