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The Company

• Start-up of ICAMS, Ruhr-University 
Bochum

• Founded by four ICAMS scientists in 2018
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The Company

Goal: Provide innovative and accessible 
microstructure simulation solutions

• Multiphysics
simulation suite

• Diverse applications
and materials

• Cutting edge 
scientific development

Casting
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The Software

Processing

Obtain microstructure and materials 
properties from process parameters

• Mechanical properties

• Microstructure 
morphology

• Element distribution

4 μm
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Coarsening

Diffusion

Finite 
Strain

Plasticity

Damage

Flow

The Software

Software library: > 50 man-
years of research and 
development since 2009

Predictive power through:

• Physics based models

• Thermodynamic and 
kinetic database
coupling

Thermo-Calc Open Calphad

Gibbs Energies Linearized Phase 
diagrams
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Outline

• OpenPhase Products and Services

• Short introduction to the phase-field method

• Mg-Al casting simulation

• Coarsening of carbon nanotube reinforced 
aluminium

• Dynamic recrystallization in austenitic steel
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Outline

• OpenPhase Products and Services

• Short introduction to the phase-field method

• Mg-Al casting simulation

• Coarsening of carbon nanotube reinforce aluminium

• Dynamic recrystallization in austenitic steel
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Software

• OpenPhase Studio: Full-featured simulation suite

• OpenPhase Core: powerful opensource Phase-field 
library

Our Products
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OpenPhase Studio

Based on OpenPhase Core, OpenPhase Studio 
provides:

• Intuitive GUI (Graphical User Interface)

• Built-in analysis of key properties

• Presets for quick and easy simulation setup

• Built-in documentation with context based 
navigation

• Windows and Linux versions available
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OpenPhase Studio
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OpenPhase Studio
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OpenPhase Core

Modules

Diffusion

Mechanics

Phase-field

Utility

Simulation code
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Support

• Quick and reliable support 

• Configure simulations, answer technical and scientific 
questions

Our Products
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Training

• OpenPhase training is available for beginners and 
advanced users

• Immediately work productively with OpenPhase

Our Products
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Custom solutions

• Custom simulations

• Custom interfaces to other software

• Implementation of new models

Our Products
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Outline

• OpenPhase Products and Services

• Short introduction to the phase-field method

• Mg-Al casting simulation

• Coarsening of carbon nanotube reinforced 
aluminium

• Dynamic recrystallization in austenitic steel
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Phase field method

• Diffuse interface between the phases. The phase distribution in 
space is prescribed by the phase field function ϕ(x,t).

• The temporal evolution of ϕ (x,t) will be derived from the 
principle of minimization of Gibbs energy.

IS, Annual Reviews of material research (2013)The Phase-Field Approach
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Outline

• OpenPhase Products and Services

• Short introduction to the phase-field method

• Mg-Al casting simulation

• Coarsening of carbon nanotube reinforced 
aluminium

• Dynamic recrystallization in austenitic steel
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Key to Metals AG 2010

Element Mg Al Fe

Density [g/cm³] 1.73 2.70 7.87

• Low density structural materials

• Automotive applications

• Consumer electronics

Mg-Al Alloys
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• Mg-Al alloys microstructure consist of
α-phase (HCP-Mg dendrites) 
surrounded by closed shell Mg17Al12 β-
phase

• properties depend on the 
microstructure

Goal: 
• Optimize the solidification 

morphology to form a percolating β-
phase around the primary α-phase

200µm

Mg-Al Microstructure and Thermodynamics
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Mg-5at.%Al

Effect of cooling rate on solidification microstructure

furnace control

• coarse 
microstructure

• connected eutectic 
regions

air cooling water cooling

• fine microstructure

• dispersed eutectic 
regions

β-Mgα-Mg

• 40-50% Al
• Mg17Al12
• Good

corrosion
properties

• 0-10% Al
• hexagonal
• Good

mechanical
properties
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15 K/s 25 K/s

200µm

5 K/s

α-Mg

β-Mg

Effect of cooling rate on solidification microstructure

slower cooling
finer microstructure
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K

Cooling curves
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System size:

200x200x200 µm

Experiment

(cooling rate 10 K/s)

Simulation

(cooling rate 10 K/s)

courtesy of D. Hoeche

1 mm

Simulation examples: Mg-Al solidification
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α

100µm

α

α

α

α

β

100µm

3D anisotropic alpha phase nucleation and growth
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10µm

Sequential Eutectic Nucleation Modeling
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Evolution of microstructure during solidification

Monas, A., Shchyglo, O., Höche, D., Tegeler, M., & Steinbach, I. (2015). Dual-scale phase-field simulation of Mg-Al alloy solidification. 
IOP Conference Series: Materials Science and Engineering, 84, 012069. https://doi.org/10.1088/1757-899X/84/1/012069

α-Mg

β-Mg
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Outline

• OpenPhase Products and Services

• Short introduction to the phase-field method

• Mg-Al casting simulation

• Coarsening of carbon nanotube reinforced 
aluminium

• Dynamic recrystallization in austenitic steel
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Secondary-phase particles 
• interact with grain boundary 
• Zener drag slows down grain growth

Carbon Nanotubes
• small size, low density, stable 

structure
• research interest: comparison to 

spherical particles

Courtesy of Bayer MaterialScience

Nano-grained Al with carbon nanotubes

Phase-field study of zener drag and pinning of cylindrical particles in 
polycrystalline materials, Schwarze et al., Acta Materialia, 106 (2016)
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Single grain boundary behaviour

box size: 150x150x60 grid cells

Carbon nanotube drag – simulations
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Single grain boundary behaviour

Carbon nanotube drag – simulations
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The grain boundaries form a cage around the tube

50 nm

box size: 250x150x150 grid cells

Carbon nanotube drag – simulations
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Different types of particles, constant volume fraction

box size: 5123 grid cells

Interaction of elongated particles with grain-boundaries 
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The grain boundaries form a cage around the tube

50 nm

box size: 2003 grid cells

Carbon nanotube drag – simulations
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Comparison to spherical particles and tubes with 
different length but same global volume fraction

Carbon nanotube drag – simulations
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Outline

• OpenPhase Products and Services
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• Mg-Al casting simulation
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aluminium

• Dynamic recrystallization in austenitic steel
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Dynamic recrystallization in austenitic steel

Challenges:
• Nucleation and grain growth depending on local 

dislocation density
• Large deformation combined with phase 

transformation

Dissertation Jan Hiebeler, thyssenkrupp
Jan Hiebeler et al. MATEC Web of Conferences 80, 01003 (2016)
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Initial condition

• Reference volume with 20 μm average grain size to
match experimental conditions
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Boundary conditions and model assumptions

Periodic boundary conditions and uniaxial compression in z-
direction

Phenomenological crystal plasticity model with
• Hardening
• Recovery

Nucleation condition dependent on local hardening rate

Coarsening and growth of recrystallized grains driven by 
reduction of stored deformation energy
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Color corresponds to effective flow stress. Recrystallized grains 
are indicated in green.

3-dimensional simulation: 75% reduction
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Variation of temperature: 
Experiment versus theory

Flow stress in individual grains 
and average flow stress

3-dimensional simulation: 80% reduction

1373 K
1373 K
1373 K
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• Phase-Field Method is quite universal

• PFM applies to diffusive timescales and continuum 
description of matter

• PFM is a handy tool to investigate correlations of different 
mechanisms controlling microstructure evolution
• Transport and morphology
• Nucleation and growth
• Mechanical and diffusive dissipation

• PFM evaluates macroscopic material properties during 
production and service considering evolving 
microstructures

Conclusion


