

H₂ and H₂O - Challenges for the Refractory Lining Concepts of Aluminum Furnaces 83rd AMAP Colloquium, Sascha Stahl, Refratechnik Steel GmbH

Agenda

Short introduction of Refratechnik Group

Lining concepts of Aluminum furnaces — State of the art

Facts of using Hydrogen as alternative energy for combustion processes

Wear mechanisms and effects due to the presence of H₂ / H₂0

Estimated effects on the refractory lining

Conclusion & Outlook

Largest family-Holding owned refractory producer

29 locations

> 2.000 employees

> 1 Mio. t production capacity 800 Mio. € turnover

Focus on two main pillars:

- High-quality refractory products and concepts
- Industry minerals

Topics

The current situation

- Worldwide investigation programs to develop (heavy) industrial processes with significantly reduced carbon footprint and alternative fuels
- "Hydrogen shall be the new Carbon", "Carbon Challenge"
- Starting theoretical, thermodynamical calculations for different scenarios
- Rapid set up of different test methods in lab and pilot plant scale
- Less possibilities for testing in industrial scale and a lot of NDAs

The questions of today:

- ▶ Are the state-of-the-art refractory concepts of Aluminium casthouse furnaces suitable for advanced Hydrogen rich burning processes?
- ▶ How will refractories be affected by these forthcoming transformations?

Refractory Linings — Challenges for Refractories

Refractory Linings — State of the Art Wear Lining

- Upper furnace, burner blocks and roof:
 Monolithics or Phosphate bonded bricks with
 50-80% Al₂O₃ usually without special anti wetting additives focus on high temperature
 resistance, TSR and mechanical strength
- Furnace hearths, bath area and belly band:
 Dense Microsilica free Monolithics/pre-shaped
 blocks or bricks with 70-90% Al₂O₃ and
 reactive anti-wetting additives (e.g. P₂O₅,
 BaSO₄, CaF₂)
- Suitable metal or ceramic anchors

Refractory Linings — State of the Art Safety Lining and Insulation

- Upper furnace, burner blocks and roof:
 Semi insulating Monolithics and bricks with 30-40% Al₂O₃
- Furnace hearths, bath area and belly band: Semi-insulating Monolithics and bricks with 30-40% Al₂O₃ and anti-wetting additives (liquidus temperature)
- Insulation with (microporous) board or brick
- Focus on TSR, heat transfer and thermal process stability according to the given heat transfer calculation/shell temperature.

Combustion and Furnace Process – State of the Art vs. Transformation

State of the Art

- Dried (natural) gas fuels for burners with ambient air, Oxygen or recuperated process heat/gas
- Stable and well-known process parameters
- (Natural) gas fuels produce a lot of CO₂ during combustion
- Plans for substitution!
- ► Stoichiometric combustion of Methane: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Transformation

- Combustion of 4-75% H_2 with air is free of CO_2 \rightarrow H_2O
- Near future: natural gas enriched with H₂
- Distant Future: H₂ should substitute natural gas, other fossil and all CO₂ forming combustion fuels
- ▶ Stoichiometric combustion of Hydrogen:

$$2 H_2 + 0_2 \rightarrow 2 H_2 0$$

Combustion and Furnace Process — Some known Facts

Combustible	Calorific value kWh/kg	Calorific value kWh/m³	
Natural Gas	8,9 - 12,5	8,6 - 11,4	
Methan CH ₄	13,9	9,94	
Hydrogen H ₂	33,3	3,0	

- Lower density and calorific value, higher volume of combustion gas to reach the same heat input (3x)
- Different flow rate, heat-flow and pressure parameters in the furnace
- Flame will change color, size, temperature (+200K)
- Different parameters for the security systems and the refractories
- Reactions with particles in the atmosphere

Quelle: Brennertechnologie beim Einsatz von Wasserstoff, Nico Schmitz –Herbert Pfeifer 6. Branchendialog | Steel meetsRefractory| 27.09.2022 | Aachen

Wear Mechanisms + Effects due to changed Combustion/Burner Settings Thermal shock

- Higher flame temperature leads to higher thermal stress around the stressed/impact area (on/off)
- Damage caused by temperature related increase in volume (irreversible/reversible)
- Formation of stresses in single bricks or networks
- Refractory lining need to perform at high temperatures, attack by:
 - → impacts flexural stress pressure

General Wear Mechanisms and Effects due to H₂ / H₂O Reaction with Refractories - Thermodynamic point of view

- 1. Thermodynamic instability due to reduction of the oxide according to the schematic equation $MeO(s) + H_2(g) \rightarrow Me(s, l) + H_2O(g)$
- 2. Active corrosion through the formation of gaseous reaction products according to the schematic equation

$$MeO_2(s) + H_2(g) \rightarrow MeO(g) + H_2O(g)$$

3. For non-oxidic refractory materials such as SiC or Si_3N_4 , in addition to a reaction with H_2 , corrosion as a result of oxidation by the residual water vapor in the H_2 -atmosphere:

Hydrothermal corrosion

$$5SiC(s) + H_2O(g) \rightarrow SiO(g) + C(s) + H_2(g)$$

Wear Mechanisms and Effects due to residual H₂ as Reduction Gas

General kinetic and hydrothermal corrosion of SiC

Corroded SiC-grain on sample surface, 1200°C, H_2 3.0, 50h, (RE, x500, 25kV)

Surface SiC-rich material, 1300° C, H_2 5.0, 50h, (RE, x20, 25kV)

General kinetic of corrosion:

- Weight change
- Volume change
- Layer formation

Source: Dr.-Ing. Almuth Sax, "Verschleißmechanismen Feuerfester Erzeugnisse"

Wear Mechanisms and Effects due to residual H₂ as Reduction Gas

Dissolving of SiO₂ by H₂ in Al₂O₃/SiO₂ ceramic bonded bricks

REFRAL S 62, cross section, Lab. test: 100% H₂, 1400°C, before and after testing

Wear Mechanisms and Effects due to residual H₂ as Reduction Gas

Dissolving of SiO₂ by H₂ in Al₂O₃/SiO₂ ceramic bonded bricks

Refral 662 5 mm

Cross section, Lab. test: 100% H₂, 1400°C

Si-Mapping

$$SiO_{2(s)} + 2 H_{2(g)} \rightarrow Si_{(s,l)} + 2 H_2O_{(g)}$$

- Ceramic bonded Andalusite brick
- Reduction of Oxides
 - → color change
- Massive weight loss detected
- Increasing porosity
- Weak structure
 - → premature wear
- Condensation of SiO below 850°C

Wear Mechanisms and Effects due to residual H₂ as Reduction Gas

Dissolving of Alumosilicate insulating wool

Changing the thermal conductivity and flexibility

Source: Dr.-Ing. Almuth Sax, "Verschleißmechanismen Feuerfester Erzeugnisse"

Wear Mechanisms and Effects due to residual H₂ as Reduction Gas

Dissolving and reduction of oxides - Richardson-Ellingham-Diagramm and Crowley

Fig. 3. Weight loss of brick at 1371°C in 75%H₂-25%N₂ atmosphere. After 32 hr water vapor was added for 150 hr.

Source: Crowley (1970); "Hydrogen- Silica reactions in refractories"

Used for the estimation of the resistance of metal oxides under diff. reducing conditions

Reactions dependent of:

- Temperature
- H_2/H_2O and CO/CO_2 ratio
- Water vapor content
- Pressure and flow rate

Wear Mechanisms and Effects due to residual H₂ as Reduction Gas

Thermodynamical calculations via FactSageTM7.3 (University of Koblenz)

The following common refractory materials were investigated					
Mg0	Cr ₂ O ₃	SiO ₂	ZrO ₂		
Al ₂ O ₃	MgCr ₂ O ₄	TiO ₂	CaO		
MgAl ₂ O ₄	С	CA ₆	CaZrO ₃		
FeCr ₂ O ₄	SiC / Si ₃ N ₄	Mullite	AIPO ₄		
Relevant refractories in Aluminum furnaces					

Wear Mechanisms and Effects due to residual H₂ as Reduction Gas

Thermodynamical calculations via FactSageTM7.3 (University of Koblenz)

- Active corrosion in pure H₂ atmosphere reduces the maximum service temperature (0.01% H₂0)
- Vapor reduces the active corrosion of Oxides
- Vapor creates new problems e.g. (re)hydration or hydrothermal corrosion

20% H_2 content \rightarrow 86% energy of pure nat. gas \rightarrow +14% gas volume for the same energy output

Wear Mechanisms and Effects due to H₂ / H₂O in the Atmosphere

Other known and estimated reactions

- Na₂O is already attacked from 600°C
- No free iron (Fe) in the refractories, total Fe_2O_3 content <1,5% (<1,0% at temp. >1150°C)
- CH_4 shows instability with H_2 in the combustion gas $\rightarrow C_{(s)}$ stable
- Carbon instability→ CH₄ formation or oxidation
- Potential (re)hydration of sensitive components in the refractories
- Free and reactive Phosphates (e.g. AIPO₄) should be attacked
- >1300°C 99% of Alumina might be the goal (example POX-reactors for Syn-Gas production)
- ▶ Unknown conditions of significantly increased water vapor pressure with unknown influence on the alloy quality get rid of the vapor!

Wear Mechanisms and Effects due to H_2 / H_2O in the Atmosphere C-Deposit / "CO Bursting"

Wear Mechanisms and Effects due to H₂ / H₂O in the Atmosphere

Alkali Bursting e.g. Potassium-Oxide (K₂O) or Sodium-Oxide (Na₂O) rich vapor

Possible Impacts on Refractories and Furnace Processes by H₂ / H₂O

1. Direct effects of H₂ and H₂O atmosphere on refractories along the entire process chain Resistance to reduction / vapor?

Permeability / Thermal conductivity?

New and unknown reactions between conditions, steam and process impurities.

Unintended condensation/deposit of gaseous components, salts, alkalis or acids.

Higher flame temperature → burning alloy components from the open bath + TSR?

2. Indirect effect due to changed properties of Aluminum process chain and process plants

Higher gas Volume (pipes, burners, peripheral devices)

What happens with the huge amount of water vapor \rightarrow Influence of Aluminum?

Burner and exhaust duct issues?

Gas recovery? Safety precautions?

Effects on the Refractory Linings — Outlook

Wear lining

Furnace hearths, bath area and belly band

In case of normal conditions, dense Microsilica free products shall be save.

But: Unknown reactions on the reactive anti wetting agents and Phosphate-bonded materials

Upper furnace, burner blocks and roof

In case of higher temperatures, Silica/Mullite/SiC containing materials could reach their max. service temperature

Anchoring with (other) suitable metal or ceramic anchors

Effects on the Refractory Linings — Outlook

Safety lining and insulation – all areas

- Materials with higher porosity can absorb a lot of water vapor and dissolved impurities and thus change their properties.
- Unwanted condensation/deposit of salts, alkalis and harmful impurities in cold areas and close to the steel shell.
- Insulation with (microporous) board or brick according to the given heat transfer calculation/shell temperature should be vapor resistant.
- New conditions for the steel shell and anchors

Conclusion & Outlook

- Many different potential mechanisms and reactions with it's relations can cause premature failure of the refractory and cause process problems
- New processes bring new focus
- Understanding of potential wear mechanisms helps to take targeted countermeasures
- Generally suitable refractory materials for H₂ based transformation are available
- ▶ Talk to your reliable refractory producer

The knowledge of all blocks results in the optimal refractory product

Thank you for your interest.

Refratechnik Steel GmbH
Am Seestern 5
40547 Düsseldorf, Germany
Sascha.Stahl@refra.com
Ruediger.Pfaar@refra.com
Viktor.Fix@refra.com
www.refra.com