

Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB

Aluminium Ion Batteries at Fraunhofer IISB: Progress and Challenges towards Application

Franziska Jach, Ulrike Wunderwald 22.05.2025

Fraunhofer IISB know-how center: Battery Systems4Future

Aluminium/Graphite dual-ion batteries (AIB / AGDIB) Motivation

Advantages

- Low-cost & abundant electrode materials
- No critical raw materials (Li, Co, Ni)
- No flammable electrolyte
- Medium energy density (comparable to Pb-acid)
- High-rate capability (up to 20 A/g_{Graphite})
- High power density (9 kW/kg_{Graphite})
- Long cycle life (> 20.000)
- High Coulomb efficiency (>95%)

High power battery meeting dynamical requirements

- Dynamical grid stabilization
- Hybrid mobile applications, power peak booster

Publications p.a.

Scopus search "Al ion battery"

TU Clausthal **Fraunhofer**

Propects

Case study: dynamical grid stabilization by battery energy storage systems (BESS)

Requirements for instantaneous reserve

Simulated frequency drop for different battery technologies

- Analysis of grid microcycles
- High cycle stability
- high symmetrical power, medium energy required

- NMC's disadvantage: limited charge rate \geq
- AIB's high rate capability enables storage system with high P/E ratio \geq

Benger et al., Advanced Battery Power 2022

J. Klink et al., Energy Reports 2025

07.07.2025 © Fraunhofer IISB. Group Battery Materials

IISB

Provision of instantaneous reserve based on real frequency data with AIB pouch cell

Benger et al., Advanced Battery Power 2022

power-focused design

5

Ч 0 400 / kwh (200 ш 0 LTO AIB NMC-HE NMC-HP

BESS system configuration

Prospects

MМ 600

Experimental emulation of instantaneous reserve with AIB

Case study: dynamical grid stabilization by battery energy storage systems (BESS)

HZ 49.95 2 2.3 2.2 0.25 ₹ 0.00 2000 3000 4000 5000 6000 7000 1000 t/s

Outcomes

- Long term stable AIB pouchcells exhibiting high P/E ratio
- AIB meets the requirements a) instantaneous reserve b) dynamical load balancing
- Bridges the gap between supercaps & LTO

Cell Chemistry

Al dissolution & plating

4 Al₂Cl₇⁻ + 3 e⁻ ⇒ Al + 7 AlCl₄⁻

Intercalation into graphite

Chloroaluminates

performance

Electroactive species

Concentration affects battery

- Cations & neutral species
- Indirect influence
- Ratio depends on AICI₃ content
 Affect species equilibria

- 0.5 1.0 1.5 2.0 2.5 $E vs Al/Al^{3+} N$ **3** C_n + **3** AlCl₄⁻
 - \Rightarrow 3 C_n[AlCl₄] + 3 e⁻

Advantages & Challenges

Anode

- ✓ Cheap alloy materials
- Dendrite growth

Electrolyte

- ✓IL or cheap DES (e.g. urea based)
- Highly corrosive stable materials required
 Charge carrier storage large amount required

Cathode

- Cheap natural graphiteWater-based slurry
- ➤ Suitable current collector: Mo

Research topics Upscaling

Cathode manufacturing

- Passive materials: binders, current collector
- Manufacturing parameters: coating & calendaring

Pouch cell design

- Casing materials
- Manufacturing process

System demonstrators

- Module construction
- BMS & sensor integration

Evaluate new cell chemistries close to application environments

AIB projects at IISB

Advanced characterization

Materials: structure & morphology

Unravelling structure-property relations

- Pristine materials
- Electrochemical properties
- Operando examinations
- Post-mortem analyses

Operando methods

- X-ray diffraction
- Raman spectroscopy
- Light microscopy
- Adapt operando cells

Ex-situ material analyses

- inert conditions often possible
- IR spectroscopy
- SEM/EDX
- Light microscopy
- Water content (Karl-Fischer coulometry)
- Particle size (laser diffraction)
- BET surface (N₂ adsorption)

Advanced characterization

Electrochemical methods

Material properties

- Ionic conductivity of electrolytes
- Electrochemical surface analysis

Half / full cell evaluation

- Test cells dependent on material & topics
- Temperature-dependent measurements
- Inert conditions

Pouch cell prototyping

- Analyse new materials in application relevant scaling
- Adapt materials & manufacturing to cell chemistry

coated on Mo Glass fiber separator with electrolyte

Electrolyte Deep eutectic solvents

Urea based electrolytes

- ✓ Extremely cheap electrolyte: AlCl₃/urea 19000 €/t AlCl₃/[EMIm]Cl 65000 €/t
- \checkmark Similar intercalation mechanism
- ✓ Similar capacities
- ✓ Less corrosive than ILs
- \checkmark First tests using technical urea
- Performance depends on Al speciation
- > Lower ionic conductivity than ILs

Cyclovoltammetry

Charge / discharge cycling

Electrolyte Deep eutectic solvents

Species equilibria

For AICI₃ / Amide L = 1

 $\begin{array}{rcl} 2 \ \mathsf{AlCl}_3 + 2 \ \mathsf{L} & \rightarrow & \mathsf{AlCl}_4^- + [\mathsf{AlCl}_2\mathsf{L}_2]^+ \\ & \rightleftharpoons & 2 \ [\mathsf{AlCl}_3\mathsf{L}] \end{array}$

Additional AICI₃

 $\begin{array}{rl} \mathsf{AlCl}_4^- + [\mathsf{AlCl}_2\mathsf{L}_2]^+ + \mathsf{AlCl}_3 \\ & \longrightarrow & \mathsf{Al}_2\mathsf{Cl}_7^- + [\mathsf{AlCl}_2\mathsf{L}_2]^+ \\ & \rightleftharpoons & [\mathsf{AlCl}_3\mathsf{L}] + [\mathsf{Al}_2\mathsf{Cl}_6\mathsf{L}] \end{array}$

AlCl₄⁻ / Al₂Cl₇⁻ concentration

Electrolyte Deep eutectic solvents

F. Jach et al., ChemElectroChem **2021**

²⁷Al NMR spectra

Relevant electrolyte properties

AlCl₃ / AcAm

Higher anion concentration for higher AICl₃ content

AlCl₃ / Urea

- High anion concentration
- High exchange rates of neutral & anionic species

> Anion ratio

> Overall anion concentration

Tuning of AI species to improve performance

15 07.07.2025 © Fraunhofer IISB, Group Battery Materials

M. Bamberg et al., Electrochim. Acta 2024 Public

Fraunhofer

IISB

Reducing self-discharge

Pouch cell developement

Single-layered cells

Single-layerd cells

Rate capability

High rate capabality with stable capacitites up to 10 C

Cycle life

Cycle stability >1200 cycles

Pouch cell developement

Multi-layered cells

Coulombic efficiency

Aluminium/Graphite dual-ion batteries

Progress & Challenges

Progress

- Low cost materials
- Al alloys
- Natural graphite
- Bio-based binders
- Urea electrolytes
- Improved shelf life
- High rate capability up to 10C \checkmark
- Pouch cells: >1200 cycles, 200 mAh
- BMS integration

Challenges

- Low cost & corrosion resistant current collector
- avoiding dendrite formation

Upscaling: next steps

- > R2R electrode manufacturing
- > Pilot manufacturing

> AGDIB technology as a feasible low cost alternative for high power storage

