# FAST FORWARD ZERO

Towards a decarbonized, more circular and inclusive economy



# New Perspectives on Aluminium Decarbonisation

AMAP 26<sup>th</sup> June 2025

Jerome Lucaes CEO

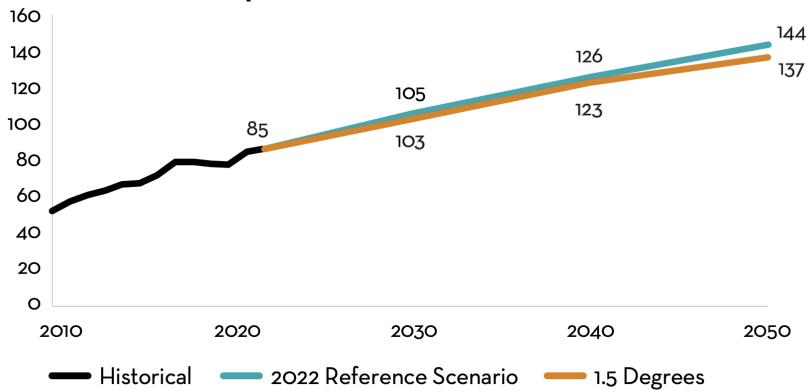


# A chaotic moment for the aluminium sector



| Trade    | wars, wars                           |                                                                                                                                                    |                             | IRAQ  | 2                  | IRAN   | N            | AFGHANISTAN |
|----------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|--------------------|--------|--------------|-------------|
| Country  | Trade action                         | What changed                                                                                                                                       | Sta                         |       | tions<br>cted      |        | Strait of Ho | rmuz        |
| US       | Increase Section 301<br>tariffs      | Tariff on Chinese aluminium increased from 7.5% to 25%                                                                                             | In effect<br>Septem<br>2024 |       |                    | Modera | 1            | PAKISTAN    |
| US       | Increase Section 232 tariffs         | Tariff on all aluminium imports increased from 10% to 25%                                                                                          | In effect<br>12 Marc        |       | BAHRAIN<br>QATAR - | ajor   | Gulfot       |             |
| US       | Removal of Section<br>232 exclusions | Removal of all country specific and product specific exclusions                                                                                    | In effect<br>12 Marc        |       | SAUDI              | U.A.E. | A STAN       | man         |
| US       | Reciprocal tariffs on all regions    | US introduced reciprocal tariffs towards the majority of the countries in the world.                                                               | 2 April                     | 200 M | ARABIA             |        | OMAN         | Arabian Sea |
| US-China | Reciprocal tariffs                   | Between 8-10 April a series of moves brought US tariffs on China to 145% above pre-Trump 2.0 level, and Chinese tariffs 125% above previous level. | 8 April, 1                  |       | US-China           | Major  |              |             |
| US-China | Reciprocal tariffs                   | US and China agree to lower their tariffs to 30% above pre-Trump 2.0 levels (Chinese exports to US), and 10% (on US exports to China).             | 12 May                      |       | US-China           | Major  |              |             |
| US       | Section 232                          | Tarif on aluminium imports from 25% to 50%                                                                                                         | 4 June                      |       | Global ex UK       | Major  |              |             |



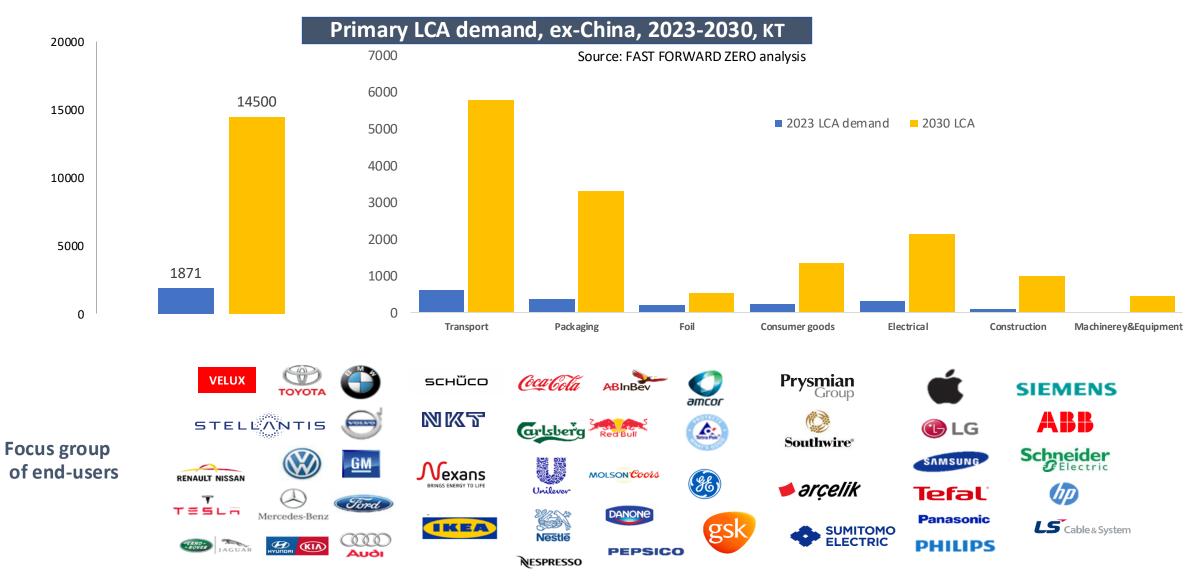

#### 2000 1,556 1,512 1,426 1500 1,285 1,212 1,365 1,355 1,309 1,217 1,182 1000 1,020 1,095 1,112 840 810 640 500 250 340 53 200 120 0 2010 2005 2015 2020 2025 2030 2040 2035 2045 2050 - B2Ds\*\* - 1.5 Degree scenario\*\*\* - BAU\* - BAU (2022)\* - Historical

### Aluminium sector (million tonnes CO<sub>2</sub>e) – 2023 update

Source: IAI, <u>https://international-aluminium.org/resources/greenhouse-gas-emissions-decline-in-aluminium-industry/</u>

# Aluminium demand will continue to increase



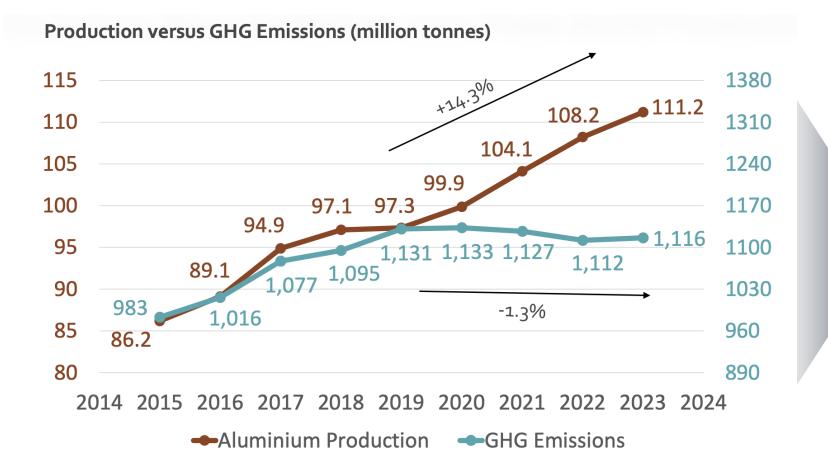



### Final products demand (million tonnes)

Source: IAI, <u>https://international-aluminium.org/resources/greenhouse-gas-emissions-decline-in-aluminium-industry/</u>

# The demand for Low Carbon Aluminium (LCA) is well established






Source: FAST FORWARD ZERO analysis

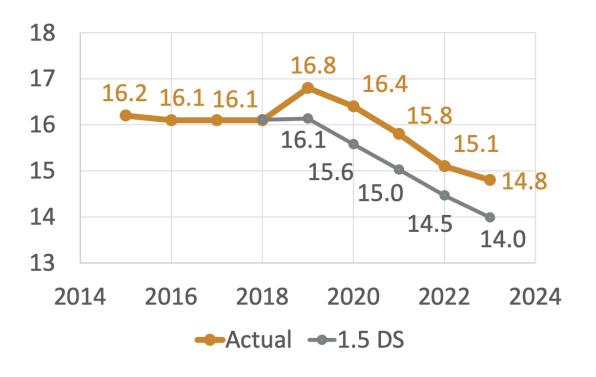
# Aluminium GHG emissions have decoupled from growth



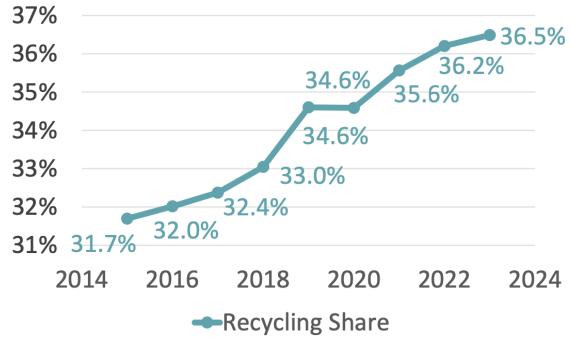
Data release from IAI (March 2025)



Total emissions and intensity are declining


Cautious optimism: "start of trend", if investments & roll out continues

Not fast enough


# Here is why



# **Primary Aluminium** - Decarbonisation Ongoing (t CO2e/t)



# **Recycled Aluminium** - Recycling Share Increased by 5 Percentage Points since 2015



# 80% of global emissions come from 3 sources



# 14.8\* $TCO_2/tAl$

#### CO<sub>2</sub> profile primary Aluminium – World average, 2023

| Global                   | © FAST FORWARD ZERO |       |                |                       |  |  |
|--------------------------|---------------------|-------|----------------|-----------------------|--|--|
| (CO2e per tonne Al)      | Bauxite Alumina     | Anode | Electrolysis C | asting Total          |  |  |
| Electricity              | 0.03% 2.1%          | 0.2%  | <b>1</b> 59.1% | 0.2% <mark>62%</mark> |  |  |
| NOX, Organic Carbon, PFC |                     | 0.0%  | 5.0%           | 5%                    |  |  |
| Direct Process (CO2)     |                     | 0.7%  | 9.9%           | 11%                   |  |  |
| Ancillary Materials      | 2.9%                | 4.3%  | 0.5%           | 8%                    |  |  |
| Thermal Energy           | 0.2% 11.0%          | 0.6%  | 0.0%           | 0.4% <b>12%</b>       |  |  |
| Transport                | 1.5%                |       | 1.2%           | 3%                    |  |  |
| Total                    | 0.3% 17.6%          | 5.8%  | 75.7%          | 0.7% 100%             |  |  |



represent 80% of the sectoral emissions



2 represent the largest realistic decarbonisation potential for the alu sector

# By 2050, achieving the full potential for recycling will cover less than 50% of the aluminium demand



Recycled Aluminium from post-consumer scrap (million tonnes)



- By 2050, post consumer scrap recycling is set to triple, but will be far from covering the aluminium demand
- Current RER (Recycling efficiency Rate) is at 76%.
- Currently 7.3 million tonnes of scrap is unutilized

Challenges and solutions:

- Better collection
- New sorting technologies
- Increase of recycling capacity. The industry has already anticipated 19 million tonnes of additional recycling capacity by 2026 (base 2020)

# Solutions for impactful decarbonisation



| Global Emissions   | Bauxite mining                                                | Al<br>L<br>Refinery<br>185              | Power<br>625                                       | Smelter<br>••••<br>Anodes<br>61   | Electrolysis<br>165 | Casting                       | Recycling                        |
|--------------------|---------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|-----------------------------------|---------------------|-------------------------------|----------------------------------|
| Mt CO <sub>2</sub> | 5                                                             | 105                                     | 025                                                | 01                                | 105                 |                               |                                  |
|                    | Alternative fuels                                             | H <sub>2</sub> for boilers and calciner | Solar power /<br>CSP, hydropower,<br>nuclear power | CCS                               | CCS                 | H <sub>2</sub> fired furnaces | Casting /<br>recycling loss      |
|                    | Electrification of<br>mining<br>equipment (e.g.<br>excavator) | Electric heaters                        |                                                    |                                   |                     |                               |                                  |
|                    |                                                               | Electric boilers                        | (PPA, RECs)                                        | Plasma torch for                  |                     |                               | reduction                        |
| Solutions          |                                                               | Recovery of                             | © FAST F                                           | anode<br>ORWARD ZE                | RO<br>Inert anode   | Electrification of            |                                  |
| Solutions          | Electrification of<br>other processes<br>(transport, etc)     | waste heat<br>Thermal storage           | CCS                                                | $H_2$ based heat for anode baking | mercanoae           | furnaces                      | Better collection<br>and sorting |
|                    |                                                               | (with PV)                               | Green H <sub>2</sub> -based                        |                                   |                     | Plasma torch for              |                                  |
|                    |                                                               | CCS                                     | power                                              | Bio-based<br>material             | Carbochlorination   |                               |                                  |
|                    |                                                               | Plasma torch for calcination            | Grid balancing services                            |                                   |                     | furnaces                      |                                  |

Solution readiness evaluation based on multi dimensions: technical and economic. Developed by FAST FORWARD ZERO

TEV 4-5

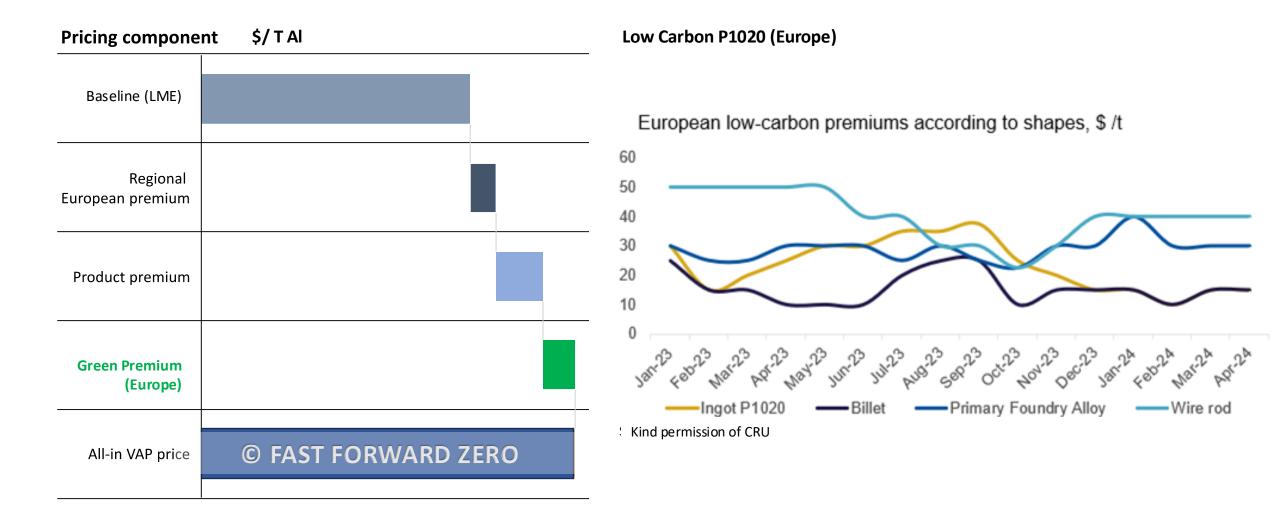
Technico-economic viability\*

TEV 8-9

TEV 6-7

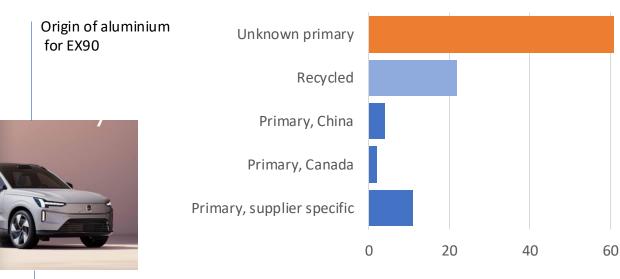
TEV 1-3

Sources: Source: IAI, IEA, FAST FORWARD ZERO


# Leading primary producers have differentiated decarbonisation strategies



| 202 BRAND         | 3.8<br>Scope1&2 (Smelter<br>casthouse)                                                                                                                                                                                                                                                                                                  | Hydro<br>Hydro<br>1.6Mt<br>4.0<br>full scope                                                                                                                                                                                                                                                                                          | Alcoa<br>Alcoa<br>Coce<br>Alcoa<br>4.0<br>Scope 1, 2, partial 3                                                                                                                                                                                                                                                                                     | EGA<br>CELESTICL<br>SOLAR ALUMINUM<br>0.08Mt<br><4.0<br>full scope<br>0.2 – 2.2Mt                                                                                                                              | CHALCO<br>Yunnan<br>Aluminium<br>2.0Mt<br>3.8 ?<br>full scope<br>3.0Mt                                                                                                                                                                                                                                                        | RUSAL<br>ANOW<br>2.6 Mt<br>4 – 6.5<br>Full scope<br>3.2 Mt                                                                                                                                                                                                                                                                    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRIMARY ALUMINIUM | <ul> <li>15% and emissions intensity by 30%<br/>by 2030 (vs 2018) - Group</li> <li>Power transition - solar &amp; wind in<br/>Australia smelters (4 GW RFP w<br/>ENERGETICs)</li> <li>Hydrogen feasibility study at Yarwin<br/>refinery</li> <li>AP60 plant expansion +160 kt</li> <li>ISAL carbon capture project - CARBFIX</li> </ul> | <ul> <li>To reduce CO2 emissions by<br/>10% 2025, 30% by 2030 and<br/>zero emissions by 2050.</li> <li>Hydrogen at alumina refinery<br/>in Brazil</li> <li>Hydrogen at Casthouses in<br/>Norway</li> <li>HALZero R&amp;D development</li> <li>Ardel/ Sunndel tech upgrades</li> <li>Reduxa 2.0 by 2030</li> <li>BIO ANODES</li> </ul> | <ul> <li>To reduce GhG emission intensity<br/>by 30% by 2025, 50% by 2030 vs<br/>2015.</li> <li>San Ciprian, Spain =&gt; Wind power<br/>by 2024</li> <li>Sai Lu e, Brai P Aresta P. d. 7.027.,<br/>Hydro power</li> <li>Alumina =&gt; MVR technology</li> <li>Smelter renewable energy use<br/>from 78% 2020 to 85% 2025</li> <li>ELYSIS</li> </ul> | PLANT                                                                                                                                                                                                          | <ul> <li>No longer investment in new smelting capacity using thermal power.</li> <li>Transfer capacity to Yunnan province</li> <li>Wind and Solar electricity: RMB 400 million green bond for wind-power projects on Jun 2. 2022</li> <li>FHEST Technologies to reduce smelter AC consumption by above 500KWh/t-Al</li> </ul> | <ul> <li>Reduce GHG emissions by<br/>35% by 2030 (vs 2018)</li> <li>Hydro power expansion<br/>(TAISHET)</li> <li>INERT ANODE (INERTA)</li> <li>Switch oil &amp; coal fuel to gas<br/>at alumina refinery. Change<br/>alumina source</li> <li>Upgrade smelting<br/>technology (exit Soderberg)</li> <li>Divestments</li> </ul> |
| RECYCLING         | <ul> <li>Recycling ≥50Kt + 400 kt Matalco</li> <li>30 kt new recycling capacity (Arvida)</li> <li>PFA production with EOL wheels (Beauharnois)</li> <li>Billets with recycling content &gt;25% (NZAS)</li> <li>50% Investment in MATALCO</li> </ul>                                                                                     | <ul> <li>Recycling capacity 1,7 M t<br/>by 2025, incl 660 kt of PCS</li> <li>Add PCS into primary<br/>aluminium VAP, pilot in<br/>Norway by 2022</li> <li>75R – Billet with &gt;75% PCS</li> </ul>                                                                                                                                    | <ul> <li>Recycling ≥ 50Kt</li> <li>ASTRAE. Purification EOL scrap<br/>up to 99.98%. Pilot in Canada by<br/>2023</li> <li>Brand. Billets with recycling<br/>content &gt;50%</li> </ul>                                                                                                                                                               | <ul> <li>Recycling plant - 170 kt in Al-<br/>Taweehah</li> <li>quisition of LEICHTMETAL</li> <li>Aluminium recycling coalition<br/>withTadweer, Coca-Cola,<br/>Pepsico, Canpack, Crown,<br/>Veolia.</li> </ul> | <ul> <li>CO2 emission (scope 1&amp;2) for<br/>unit aluminium production at<br/>12.71 tons in 2020, down 4.4%<br/>yoy.</li> </ul>                                                                                                                                                                                              | <ul> <li>RHEINFELDEN, 30 kt</li> <li>Primary with PCS pilot at<br/>Kubal</li> </ul>                                                                                                                                                                                                                                           |


# The price signals for Low Carbon Alu are not sufficient yet to justify significant decarbonisation efforts





# Carbon Data Trust across the supply-chains is essential





Volvo EXC90/XC90 model

For EX90, latest Volvo model, 61% of all aluminium consumed comes with unknown primary sources Suppliers specific data are essential to drive real carbon footprint performance

Harmonized calculcations for product carbon footprint are required

Digital Product Passports needs to happen fast



# **Citizens & Customers** *"It is not* up to me to act first" **Regulators & Businesses** Governments

### Aluminium :

### 5 priority drivers to decarbonize by 2030

- 1. Recycling
- 2. Greening electricity at smelters
- 3. Decarbonizing heat at refineries
- 4. Carbon Data trust across the value-chain
- 5. Regulatory instruments (governments and markets)





# Jerome Lucaes

### **CEO, FAST FORWARD ZERO**

IAI, Strategic Advisor (since 2022)

### 25 years in the aluminium sector

Experience (highlights) :

RUSAL, Director - Low carbon aluminium program Rio Tinto

- Global Product sustainability director
- Product Director, Primary aluminium

Pechiney / Alcan (now Constellium)

Co-creator of the Aluminium Stewardship Initiative (2011-2014)

### Few World Firsts in ALUMINIUM / SUSTAINABILITY

- First announced **Net zero carbon strategy** for a global mining & metal (Jan 2021)
- First two low carbon aluminium brands (RENEWAL, 2016, ALLOW, 2017)
- First low carbon partnerships from mine to consumers (Rio Tinto, Rusal -> Nespresso, Apple, Budweiser)

Initiator of several collaborative groups :

- Co-creation of the Aluminium Stewardship Initiative (ASI)
- Aluminium Forward 2030 (IAI)
- Aluminium for Climate (WEF/ Mission Possible Partnership)



What we do

### From Insight to Impact Aluminium | Metals | Supply-Chains | Decarbonisation

Strategic analysis & Roadmaps From Options to Business Case and FID BUSINESS Narratives ٠ **STRATEGIES** Go-to-Market – Low carbon products ٠ Stakeholder engagements ٠ **Education & Training** Advisory to boards NET ZERO, CIRCULAR, & FAIR TRANSFORMATIONS

٠



### ALUMINIUM

- Deep expertise: global aluminium value chain
- Recycling and circular models
- Environmental impacts
- Supply security, cost management

### SUPPLY-CHAINS

• Supply-Chain decarbonisation

Decarb strategies & Technologies

- Traceability tools and sytems
- Engagements and Partneships
- Mine to products partnerships



# FAST FORWARD ZERO

### Advisory & Education & Coalitions

Climate resilient business transformations Decarbonation |Circularity models |Metals supply-chains

- Business Development
- Supply-chain Decarbonisation
- GoToMarket Low Carbon Products
- Coalitions Collaborative Engagement



