T. Brüggemann1, C. Bollmann2, S. Hojda3, M. Vogd4, F. Mao5, Z. Liang6, S. Borsch7

1) Hydro Aluminium Rolled Products GmbH, Research and Development, Bonn, Germany
2) Aleris Rolled Products Germany GmbH, Attendorn, Germany
3) Institute of Metal Forming (IFM), RWTH Aachen University, Aachen, Germany
4) SMS group GmbH, Düsseldorf, Germany
5) Institute of Physical Metallurgy and Metal Physics (IMM), RWTH Aachen University, Aachen, Germany
6) Novelis Research and Technology Center, Göttingen, Germany
7) previously with Muhr and Bender KG, Attendorn, Germany

Goal
Modeling of the microstructure evolution along the whole processing chain, and to predict the mechanical properties of the final product.

Process Chain „Rolling“
- DC casting
- homogenization
- hot rolling
- cold rolling & annealing
- cold rolling / skin pass rolling

Sub-Project 1: Rolling
- Industrial processing of one AA 6016 ingot
- Material characterization and data mining after various processing steps for validation of through-process model
- Through-process model for complete processing chain

AMAP P1 full size ingot | SEM micrograph for particle quantification | evolution of experimental & simulated rolling force

Sub-Project 2: Aluminium Skin-Pass Rolling
- Investigation on the influence of strip thickness and work hardening on the surface transfer
- Investigation on the influence of rolling speed, work roll roughness, and lubrication on the surface transfer
- Numerical simulation of surface transfer on the basis of model (2D & 3D) and industrial EDT surfaces

Measured surface topography | discretization for 3D Finite Element Model and validation of 3D model [1]

Sub-Project 3: Micro-Macro Link & Forming
- Generating macro-mechanical input out of microstructure data by using a homogenization method regarding hardening, anisotropy, and forming limits
- FEM-simulation of forming

Cross die exp. superimposed with sim. | FLD of exp. (black) vs. sim. (colored) | comparison of different drawing depth

Sub-Project 4: Aging
- Laboratory processing and characterization of the material regarding various aging scenarios
- Development of a physically based model for precipitation evolution
- Development of a model for evolution of yield stress during hardening

TEM micrograph after artificial ageing (AA) | model flowchart | influence of pre-strained areas on final properties after AA [2]

For more information please contact: info@amap.de

References: